Nintendo Entertainment System

Now you’re playing with power!

Seth Hendrick, Alex Sarra
Agenda

1. What is video gaming?
2. History
3. Console Specifications
4. CPU (2A03)
5. Picture Processing Unit (PPU)
6. Cartridges
7. Memory Management
8. Conclusion
What is video gaming?

- Popular pastime of today’s youth, and other’s not so youthful
- Video gamers
 - Excited about gaming
 - Want to see continual progress
- Market
 - Several competing companies
 - Satisfy gamer’s needs
 - Nintendo, Sony, Microsoft, etc.
 - Strategy is different based on company
- Nintendo
 - Hardware is traditionally less expensive
 - Cost is generally lower per console unit with higher market longevity
History

- Nintendo released the FAMICOM (FAMily COMputer) in Japan in 1984 [2]
- Despite the video game crash in the US, Nintendo released the N.E.S. in 1986.
 - $250 version came with R.O.B., Gyromite, Super Mario Bros, 2 controllers, Duck Hunt, and a light gun
 - $200 version came with Super Mario Bros, and 2 controllers.
- Nintendo designed the N.E.S. to look like a VCR instead of a Video Game System due to the crash.
History

- 1993: Nintendo released the N.E.S. 2
- 1995: Nintendo discontinued the N.E.S.
- The N.E.S. sold 62 million systems and over 500 million games
 - One of the most popular game systems of all time.
Console Specifications

- 8-bit CPU
- 1.79 MHz
- PPU
- 64 Value Color Palette
- System Memory - 2KB
- VRAM - 2KB
- Program ROM - 32+ KB
- Character ROM - 8+ KB
- Sprite RAM - 256 Bytes
- Temporary Sprite RAM - 24 bytes
- Color palette RAM - 32 bytes
CPU - 2A03

Overview [2, p.9]:
- Ricoh - 2A03
- NMOS
- Little Endian
- 8-bit data bus
- MMC
- 8-bit control
- 16-bit address
CPU - 2A03

Memory Access [2, pp. 9, 10]:
- **ROM**
 - Read-only
 - Accessed via MMC
- **MMC**
 - Controller for ROM access
 - Allows for bank swapping
- **RAM**
 - Mirroring
 - Zero Page
 - PRG-ROM

Address Bus
- 16-bit
- Set address
- Support for 64KB
 - $0000-$FFFF

Control Bus
- Read or Write?
- Screen Mirroring
- Disk IRQs

I/O
- PPU and control
CPU - 2A03 - Registers

- Registers [2, pp. 11-13]
 - 16-bit Program Counter (PC)
 - Games could only be 64 Kb
 - 8-bit Stack Pointer (SP)
 - 8-bit Accumulator (A)
 - 8-bit Index Register X (X)
 - 8-bit Index Register Y (Y)

- 8-bit Processor Status
 - N - is number negative
 - V - overflow
 - B - set if the BRK instruction occurs
 - D - Used to switch into BCD mode
 - I - Disable interrupts
 - Z - Zero
 - C - Carry
CPU - 2A03 - ISA

- Instruction Set Architecture [8]
 - Load/Store operations
 - LDA, LDX, LDY, STA, STX, STY, etc.
 - Register Transfer Operations
 - TAX, TAY, TSX, TXA, TXY, etc.
 - Stack Operations
 - PHA, PLA, etc.
 - Arithmetic Operations
 - ADC, AND, etc.
 - Increments / Decrements
 - INX, INY, DEX, DEY, etc.
- Shifts
 - ASL, LSR
- Jumps/calls
 - JMP, JSR
- Branches
 - BNE, BEQ
- Status Register Operations
 - CLC, CLI, SEC, SEI
The Picture Processing Unit (PPU)

- The CPU by itself was not enough power [3]
- The Picture Processing unit could:
 - Generate Colors
 - Move characters on the Screen
 - Display 52 colors
 - 24 allowed on the screen at the same time
 - Other video game units only had 6-8 colors.
Memory Map [2, p. 17]
- Pattern Tables
- Name Tables
- Palettes
- Mirrors

Table 1

<table>
<thead>
<tr>
<th>Pattern Table 0</th>
<th>Pattern Table 1</th>
<th>Name Table 0</th>
<th>Name Table 1</th>
<th>Attribute Table 0</th>
<th>Attribute Table 1</th>
<th>Attribute Table 2</th>
<th>Attribute Table 3</th>
<th>Mirror $2000-$2EFF</th>
<th>Sprite Palette</th>
<th>Image Palette</th>
<th>Mirror $3F00-$3F1F</th>
<th>Mirror $3F20</th>
<th>$4000</th>
<th>$10000</th>
</tr>
</thead>
<tbody>
<tr>
<td>$0000</td>
<td>$1000</td>
<td>$2000</td>
<td>$2400</td>
<td>$2700</td>
<td>$2800</td>
<td>$2B00</td>
<td>$2C00</td>
<td>$2F00</td>
<td>$3F00</td>
<td>$3F10</td>
<td>$3F20</td>
<td>$4000</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Pattern Tables [3]

- The sprites and background images are saved in here
- Sprites are 8X8 pixel titles
 - Titles are 16 bytes (128 bits)
 - Each byte (bits) is a row in the sprite
 - The sprites have 2 layers
 - First 8 bytes are the first layer
 - Second 8 bytes are the second layer
 - Each sprite can have 4 possible colors
Layer 1

Layer 2

Combined

$00 = 00000000
$00 = 00000000
$00 = 00000000
$00 = 00000000
$00 = 00000000
$0E = 01111110
$3C = 00111100
$3C = 00111100
$7E = 01111110
$7E = 01111110
$7F = 11111111
$FF = 11111111
$FF = 11111111
$42 = 01000010
$00 = 00000000

Layer 2

Layer 1

Overall

Palette Assignment

Color 0
Color 1
Color 2
Color 3

“Layer 2” + “Layer 1” = Final Palette Assmnt
Name Tables [3]

- Backgrounds are stored here
- PPU supports 4 name tables
- NES RAM can only support 2
 - Other 2 tables are mirrored
- Each table has 30, 32-byte strings of data
 - tiles assigned left-to-right, top-to-bottom
- Remaining 64 bytes are for background palette assignments
Picture Processing Unit (PPU)

- Scrolling with nametables [3]

Image from Badder Hacks

Image from NES System Documentation
Picture Processing Unit (PPU)

Palettes [3]

- Consists of four colors chosen from NES’ internal index
- Tiles are colored by assigning them a palette
- Background tiles can be assigned to any of four palettes
- Sprite tiles can be assigned to any of a separate set of four palettes
Cartridges

- Unlike previous systems, Nintendo released a cartridge standard.
- The FAMICOM cartridge
 - Smaller than the N.E.S. Cartridge
 - 60 pin connection
- The N.E.S. Cartridge
 - Bigger than the FAMICOM’s
 - 72 - pin connection
 - Mostly empty space
 - Had a “Lock out system.”
- The N.E.S. had enough memory for early games
 - Some games needed more
 - Cartridges could have their own ROM.
Memory Management

- Game Specific MMC [6]
 - Nintendo made 9
 - Konami made 4
 - Namco
 - Sunsoft

- Supplement On-Board MMC
 - More complexity → Increasing demand
 - Swappable memory
Memory Management

● How Memory Mapping works [6]:
 ○ The N.E.S. used bank switching
 ○ MMC monitors memory writes for specific address (or range)
 ○ When the system needs access to data on a ROM bank and the data is not in PRG-ROM yet, software indicates the need to switch banks.
 ○ The selected memory is loaded into the bank in PRG-ROM from the cartridge.

● The use of memory mappers helped the N.E.S. to survive technological limitations and extend the life of their product
Conclusion

- The NES uses the 6502 Microprocessor
- The NES has its own custom PPU
- The NES can swap memory between it and the cartridge
- The NES was one of the most popular Video Game Systems
- The Super NES was the NES’s replacement (1990 Japan, 1991 US).
- Nintendo continues to follow practices regarding selling their consoles that started with the NES today.
THANK YOU!

Any Questions, Comments, Queries, or Threats?
References