The Future of AMD Processors: Zen

Thomas Guerin & Jason Skrien
Agenda

- AMD’s Market Position

- Bulldozer
 - Architecture
 - Benefits
 - Flaws

- Zen
 - Architecture
 - Enhancement Goals
 - New Memory Hierarchy
 - Scheduling
 - Improved Branch Prediction
 - Micro-op Cache
 - Simultaneous Multi-threading (SMT)
 - Power Savings
 - New Instructions
 - Release Timeline

- Conclusions & The Future of AMD
AMD’s Market Position

- AMD’s market share has declined from nearly 50% in Q1 2006 to a mere 20% in Q1 2016
- In May 2015, Kerrisdale Capital Investment claimed that AMD would be bankrupt by the year 2020
AMD Bulldozer: The Good

- 40-entry scheduler gives good instruction level parallelism
- Inexpensive relative to current Intel products
AMD Bulldozer: The Bad

- Designed to increase frequencies while maintaining IPC of previous architecture
 - Long pipeline resulted in high latency

- Branch Prediction
 - 5% miss rate (13% on 7zip Benchmark)
 - 20 cycle penalty

- 2-way cache associativity is low

- Power inefficient
Bulldozer Architecture

- AMD implemented a 2 core per module scheme
 - Two integer schedulers
 - One floating point scheduler
 - L1 cache shared across “cores”
 - L2 and L3 cache shared across modules
Bulldozer Flaws

- Software scheduling disaster
 - Windows sees the load of eight modules rather than the four cores
 - Tasks may be scheduled to run on free cores of busy modules - not ideal
 - CPU clocked higher in 4M/4C often faster than normal clock in 8C/4M

The consumers look unhappy
Add more cores
Introducing: Zen

- Extracting instruction-level parallelism
- Promises of 40% IPC improvement (28.6% reduction in CPI)
- Improved Instruction Level Parallelism
- Lower power
- New ISA Extension
- Scales from low-power notebooks to servers
- PCI Express 3.0: Rumored 36 lanes
 - Up to 24 Lanes on Intel Kaby Lake
 - Up to 38 lanes of 2.0 on Bulldozer
General Architecture

- Cores grouped per CPU Complex (CCX)
 - 4 cores per CCX
 - Private L1/L2 caches
 - Shared L3 cache
New Memory Hierarchy

- **L1:** (private)
 - 64k 4-way I-Cache
 - 32k 8-way D-Cache
 - Switched to write-back
- **L2:** 512k 8-way (private)
- **L3:** (shared)
 - 8MB per CCX
 - 16-way
 - Holds blocks evicted from L1 & L2
 - No redundant data from L2
 - High associativity: reduce conflicts
 - Claims of 5x L3 bandwidth
Scheduling

- Dual schedulers - one for int, one for floating point
- Integer Rename Space 168 registers
- 6x14 scheduling queues
- Increased size of scheduler register files
 - 160 floating point entries
 - 192 integer entries
Improved Branch Prediction

- Two branches per Branch Target Buffer
- Neural network machine learning methodology
- Strided Sampling Hashed Perceptron Predictor
 - In existing microprocessors
 - Oracle SPARC T4
 - AMD Bobcat APU
 - Samsung Exynos 8890 (Galaxy S7)
 - Keeps a history of instructions
 - Samples bits within that history
 - Training finds correlations between history sample and outcome
Hashed Perceptron Branch Predictor

1. Hash segments of branch history into multiple tables
2. Apply a threshold to the sum of the weights selected by the hash functions. A threshold is applied to predict the branch.
3. Update weights of neural network using “perceptron learning”

\[y = w_0 + \sum_{i=1}^{n} x_i w_i \]
Hashed Perceptron Methods

Naïve Sampling:

Geometric Sampling:

Strided Sampling:
Micro-op Cache

- x86 is CISC not RISC
- Complex variable-length instructions
- Instructions decoded into micro-ops
- Cache offloads the complex decode hardware
- Decreases power consumption
Simultaneous Multi-threading (SMT)

- Intel® Hyper-Threading™ is an example
- Two threads per physical core
- Keeps the FUs busy, increases IPC
- If one thread is blocked, the other can continue to use the core
Power Savings

- “Aggressive” clock gating
 - Disables unused portions of the circuitry
 - Stop components from switching states

- Changing from 28 nm planar to 14 nm FinFET
 - Improved transconductance
 - Reduces power consumption
 - Reduces required die size
New Instructions

<table>
<thead>
<tr>
<th>Instruction</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADX</td>
<td>(Add extended) Add two unsigned multiprecision integers plus carry</td>
</tr>
<tr>
<td>RDSEED</td>
<td>Complements RDRAND instruction, generates seed for PRNG</td>
</tr>
<tr>
<td>SMAP</td>
<td>Supervisor Mode Access Protection</td>
</tr>
<tr>
<td>SHA1</td>
<td>SHA1 encoding</td>
</tr>
<tr>
<td>SHA256</td>
<td>SHA256 encoding</td>
</tr>
<tr>
<td>CLFLUSHOPT</td>
<td>Cache Line Flush</td>
</tr>
<tr>
<td>XSAVEC</td>
<td>Save Compact</td>
</tr>
<tr>
<td>XSAVES</td>
<td>Save Supervisor</td>
</tr>
<tr>
<td>XRSTORS</td>
<td>Save Restore</td>
</tr>
<tr>
<td>CLZERO</td>
<td>Clear line of cache</td>
</tr>
<tr>
<td>PTE Coalescing</td>
<td>Merge 4K page tables into 32K page tables</td>
</tr>
</tbody>
</table>
Zen Release Timeline

- “Summit Ridge” expected Late 2016/Early 2017
- Low-end 8 cores/16 threads $200 - 300 MSRP
- High-end 8 cores/16 threads ~$500
Conclusions & The Future of AMD

- Hopefully Zen is the release AMD needs to pull it back from the edge of bankruptcy
- #MakeAMDGREAT AGAIN
- AMD processors in the latest generation of game console promise to provide revenue in the meantime
References

- http://www.theregister.co.uk/2016/08/22/samsung_m1_corerelease/