Agenda

- History of the Raspberry Pi
- Hardware
- ARM Processor
- Programming
- Applications
- Raspberry Pi vs BeagleBone
History of the Raspberry Pi

- The purpose of creating these affordable, programmable computers was to promote basic computer science to be taught in schools.
- Created by the Raspberry Pi Foundation (UK)
- Sold over two million units within two years of having licensed manufacture deals with element 14/Premier Farnell and RS Electronics.
Why you should use one

- Low cost and low power
- Simple to use
- Educational device for youths and hobbyists to learn about programming
- Versatile for many different projects/applications
- Compact Size
- Immense amount of resources for different projects
Hardware

- 4 Models: A, A+, B, B+
- 85.6mm x 56mm x 21mm
 - The size of your student ID
- ARM1176JZF-S Processor
 - Typical clock size is 700 MHz, performing at approximately 40 MFLOPS
 - Can be overclocked to 1GHz without any issues
- Includes VideoCore IV graphics processor with 1 billion pixels per second
- 512 MB of RAM is built into the board, not replaceable or upgradeable
- Includes multiple built on I/O ports
 - 100 MB/s Ethernet port
 - HDMI port and RCA port
 - Audio Jack
RISC Architecture

- Low Transistor Count
- Low Power Consumption/Heat Production
- Used in most mobile devices
 - Phones
 - Laptops
 - Small Digital Devices
- Raspberry Pi has similar requirements to mobile devices
- Architecture allows for various Unix OSs
 - Raspberry Pi can utilizes nearly all Linux distros
Instruction Set

- 3 Instruction Sets
 - 32 Bit ARM
 - Single Instructions
 - Handles Data
 - Organizes Processor Segments
 - 16 Bit Thumb
 - Specialize in branch range and address space
 - Used with ARM for rapid interrupts
 - Used for Digital Signal Processing
 - 8 Bit Java
 - Jazelle Technology
 - Deals with complex Java bytecodes
Major Processor Segments

- Integer Core processes integer values
 - 40 total 32-bit registers
 - Three Pipelines
 - ALU, MAC, and Load/Store
 - ALU handles all arithmetic, logic, shift, and saturation operations
 - MAC handles all Multiply operations
 - 32x16 multiplier
 - Accumulator
Major Processor Segments

- Load/Store Unit handles all load and store operations sent from the Integer Core, and decouples these instructions from the MAC and ALU pipelines.
- Prefetch Unit handles all instruction calls
 - Utilizes both types of branch prediction
 - Combined with the Branch Target Address Cache (BTAC) results in nearly zero wasted cycles (Dynamic)
 - Also handles branches not in BTAC with normal branch predictor (Static)
Major Processor Segments

- Memory Management Unit organizes all memory calls, in order to make them more efficient, lowering system delays.
- Vector Floating Point Coprocessor (VFPC)
 - Core of process is integer
 - Floating Point Operations done here
 - Single and Double Precision
 - Eight single or four double elems
- Vector Interrupt Control (VIC) Interface
 - Handles all interrupts
 - Deals mainly with external systems
 - Request Signal allows faster interrupt
Pipelining

- 8 stage pipeline
- Datapath consists of three pipelines:
 - ALU, shift, or Sat pipeline
 - MAC pipeline
 - Load or store pipeline
- Fetch stages can hold up to four instructions. Branch prediction performed on instructions ahead of execution of earlier instructions
- Issue and Decode stages can contain any instruction in parallel with a predicted branch
- Execute, Memory, and Write stages can contain a predicted branch, an ALU, or multiply instruction load/store multiple instruction, and a coprocessor instruction in parallel execution.
Pipeline Stages

Fe1: 1st fetch stage
Fe2: 2nd fetch stage
De: Instruction decode
Iss: Reg. read and issue
Sh: Shifter stage
ALU: ALU operation
Sat: Saturation stage
WBex: Writeback Mul/ALU

MAC1: 1st multiply acc. stage
MAC2: 2nd multiply acc. stage
MAC3: 3rd multiply acc. stage
ADD: Address generation
DC1: Data cache 1
DC2: Data cache 2
WBls: Writeback from LSU
Programming on a Pi

- Raspberry Pi supports multiple Linux distributions
 - Ubuntu
 - Openelec
 - OSMC
- The installed ARMv6 also handle many languages
 - Python
 - C
 - C++
 - Java
 - Ruby
 - Scratch
- More programming languages can be installed with proper support tools
Applications

- While originally used to teach kids about programming, the Raspberry Pi has evolved to be used for a multitude of different applications
 - Automated Light Control System
 - Game System Emulator
 - Surveillance System
 - Universal Remote Control system
 - Automated House system
 - Music Streaming Speakers
Surveillance Camera
Game Emulator
Remote Control Car
Raspberry Pi vs BeagleBone

<table>
<thead>
<tr>
<th>Feature</th>
<th>Raspberry Pi</th>
<th>BeagleBone Black</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cost</td>
<td>$35</td>
<td>$45</td>
</tr>
<tr>
<td>I/O Pins</td>
<td>8 Pins</td>
<td>65 Pins</td>
</tr>
<tr>
<td>Power Draw</td>
<td>260-350 mA</td>
<td>210-460 mA</td>
</tr>
<tr>
<td>Processor Speed</td>
<td>700 - 1000 MHz</td>
<td>1000 MHz</td>
</tr>
<tr>
<td>RAM</td>
<td>512 MB</td>
<td>512 MB</td>
</tr>
<tr>
<td>Video Outputs</td>
<td>HDMI, Composite</td>
<td>Micro-HDMI</td>
</tr>
<tr>
<td>Audio Outputs</td>
<td>Stereo over HDMI, 3.5mm</td>
<td>Stereo over HDMI</td>
</tr>
<tr>
<td>Onboard Memory</td>
<td>SD Card</td>
<td>2 GB On-board, MicroSD</td>
</tr>
</tbody>
</table>
Sources

- http://makezine.com/magazine/how-to-choose-the-right-platform-raspberry-pi-or-beaglebone-black/