Evolution of ARM Processor Architecture

Amber Baruffa
Vincent Varouh
ARM History

- **Advanced RISC Machine**
- 1979 – Acorn Computers Created
- 1985 – first RISC processor (ARM1)
 - 25,000 transistors
 - 32-bit instruction set
 - 16 general purpose registers
 - Load/Store Multiple Instructions
 - 26-bit address space
- November 2010 – Advanced RISC Machines Ltd
 - Create base tech. and license intellectual property
- Currently most widely used architecture in the world
Over 700 Licenses
Architecture Versions

<table>
<thead>
<tr>
<th>Architecture</th>
<th>Family</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARMv1</td>
<td>ARM1</td>
</tr>
<tr>
<td>ARMv2</td>
<td>ARM2, ARM3</td>
</tr>
<tr>
<td>ARMv3</td>
<td>ARM6, ARM7</td>
</tr>
<tr>
<td>ARMv4</td>
<td>StrongARM, ARM7TDMI, ARM9TDMI</td>
</tr>
<tr>
<td>ARMv5</td>
<td>ARM7EJ, ARM9E, ARM10E, XScale</td>
</tr>
<tr>
<td>ARMv6</td>
<td>ARM11, ARM Cortex-M</td>
</tr>
<tr>
<td>ARMv7</td>
<td>ARM Cortex-A, ARM Cortex-M, ARM Cortex-R</td>
</tr>
<tr>
<td>ARMv8</td>
<td>No cores available yet. Will support 64-bit data and addressing</td>
</tr>
</tbody>
</table>
ARMv2

- ARM2 – 1986
 - 30,000 transistors
 - 32-bit data bus
 - 26-bit address bus
 - Acorn “Archimedes” (1987)
 - Not successful

- ARM3 – 1990
 - Instruction cache added
 - Clock rate increased to 25 MHz
ARMv3

- ARM6, ARM7
 - ARM6 no longer used
- 32-bit addressing
- Long multiply support
- 3 stage pipeline
 - Fetch, decode, execute
- ARM4 and ARM5?
ARMv4

- 1994 – ARM7 first well-known processor
- First architecture used in mobile devices
- ARM7, ARM9 still used
- ARM9 vs. ARM7
 - Harvard Architecture
 - DSP Functionality
- StrongARM – 1996
 - Acquired by Intel – 1997
- Added Halfword load and store instructions
- Thumb state
ARMv4 (cont.)

- Thumb Instructions
 - 16-bit instructions
 - Code Density
 - Decompressed in Decode
 - Less Functionality
ARMv5

- ARM7, ARM9 still have licenses
 - ARM9 used in first smartphones
 - ARM9 best selling ARM processor family
- Xscale – Intel and Marvells (2002)
 - StrongARM successor
 - No floating point operations
 - Superpipelined Microarchitecture
- Improved ARM and Thumb interworking
 - Quickly and easily switch between the two
ARMv5 (cont.)

- Jazelle
 - Third execution mode to execute Java bytecode
 - Low memory when switching tasks
- Enhanced DSP Instructions
 - 16-bit Multiply Operations
 - Count leading-zeroes instruction
- 5 stage pipeline
 - Fetch, decode, execute, memory, writeback
 - Most instructions now performed in one cycle
ARMv6

- ARM11 is still used today in many smartphones
- Beginning of Cortex–M series of processors
- Improved memory management
 - Improved by over 30%
 - More efficient bus usage, direct memory access, reduced average instruction fetch and data latency, physically tagged cache
- Multimedia support
 - Over 60 Single Instruction Multiple Data Capabilities
 - Sum of Absolute Differences instruction improved by 15 cycles
ARMv6 (cont.)

- Multiprocessing
 - Improved sharing memory between processors and synchronizing them
 - Load/store exclusive instructions with semaphores

- Improved data handling
 - System on a chip integration leads to the system being mixed-endian
 - E-bit set and cleared using SETEND
 - Byte reverse instructions to transform endianness of data

- 8 stage single-issue pipeline
 - Hardware branch prediction
 - Split Instruction/Data Level1 caches physically tagged
 - Out of order completion
ARMv7

- Cortex-A: Applications
 - Internet access, media, graphics
- Cortex-M: Microcontrollers
 - Low energy, longer battery life
- Cortex-R: Real-time Devices
 - Reliable, error correction, parity checks
- NEON
 - 10-stage pipeline
 - Dual issue, in order execution
 - 2 cache levels, split and unified
 - General-purpose SIMD engine – great for media
ARMv7 (cont.)

- Jazelle–RCT
 - Ahead-of-time compilation
 - Just-in-time compilation

- Thumb–2
 - Minimizes code density
 - Given new instructions

- Floating Point Architecture
 - Now tightly coupled with CPU
 - Half, single, double precision floating point ops
 - Thumb and ThumbEE can now also run
ARMv7 (cont.)

- **TrustZone**
 - Integrated in Cortex-A processors
 - Protects memory, keyboards, screens from attacks
 - Hardware and software partitioned into subsystems
 - One processor for both subsystems
 - 3 levels of implementation
 - Secure OS for payment on device
 - Digital Rights Management
 - Authorization of viewing materials with keys

- **SecurCore**
 - Secure solutions for smart cards
 - Used by TrustZone
Normal world

- Normal world user mode
- Normal world privileged modes

Secure world

- Secure world user mode
- Secure world privileged modes

Monitor mode
ARMv7 (cont.)

- big.Little Processing
 - Way to extend battery life up to 70%
 - “big” processor: Cortex-A15
 - Big performance
 - “Little” processor: Cortex-A7
 - Little energy
 - When a device has high workloads, can switch to A15 for maximum performance, otherwise stays with low energy processor
Cortex-A15 Processor

- 2.5 GHz
- Virtualization
 - Migrate OS instances between servers quickly
 - Run multiple OS instances simultaneously on CPU
- Large Physical Address Extension
 - 32-bit virtual memory addresses can be mapped into 40-bit physical address spaces
 - New page table format
 - Physical address space can be 4 kB
- 12 stage pipeline
 - 1 12-stage in order, 3 12-stage out of order
ARMv8

- 64-bit architecture
- 30 general purpose registers
 - 64 bits wide
- Load–acquire/Store–release instructions
 - Higher performance in concurrent programs
- Instruction level support for cryptography
 - 2 encode and decode instructions
- Large Physical Address Extensions
 - 48-bit physical addresses
 - Page table down to 4 levels
- Backwards compatibility
Revenue & Market Share

- 6.1 Billion chips sold in 2010
 - 55% increase from 2009
- Highly used in mobile and embedded devices
 - 95% of smartphones
 - 10% of mobile computers
 - 35% digital TV and STB
- $192 million revenue – 2011 third quarter
 - 22% increase from 2010
What’s Next?

- Windows 8
 - OS for many different devices
 - 23% of PCs by 2015
- ARMv8
 - Largest architectural change in ARM’s history
 - Release of Armv8 prototype products in 2014
- Extending to server markets
 - HP productions – 2012
- Continue to be the most widely used architecture
References

Questions?