Deep Blue Chess Computer

Bradley Conn
Outline

- History
- Match Controversy
- System Overview
- The chess chip
- Alpha Beta Pruning
- Quiescence Search
- Parallelization
- Other strategy
- Timers
- References
History

Chiptest

- Carnegie Mellon 1985
- 3 graduate students
- Special VLSI move generator chip
- 50,000 moves per second

Chiptest-M

- 1987
- 500,000 moves per second
- Removed chiptest bugs
History

Deep thought

- 1988
- IBM took over the project and hired the people behind it
- First computer to beat a grandmaster
- 700,000 moves per second

- Stepping stone to Deep Blue
- 24 processor system
- Complete software rewrite to handle parallelism
History

Deep Blue (1996)

- 1.6 to 2 million positions per second per chip
- 50 to 100 million positions per second for system
- Played Garry Kasparov and lost the series with 2 wins, 4 losses

Deep Blue (1997)

- Enhanced chess chip with 2 to 2.5 million positions per chip
- 200 million positions per second
- Beat Garry Kasparov with 3.5 wins, 2.5 losses (.5 is awarded for draws)
History

- The 1997 defeating of Garry Kasparov was considered a turning point in Artificial intelligence
- Many articles are still being written today about the computer
 - As recently as this month
 - http://mashable.com/2016/02/10/kasparov-deep-blue/#mNpePE_fkkqd Feb 2016
Match controversy

- Kasparov set a trap in which Deep Blue would gain material but lose position
- Deep blue didn’t take the bait and instead went for a long positional play
- Kasparov was shaken by this and never won a game against Deep Blue after
- Kasparov accused the IBM team of cheating
 - Claimed a move was too human like and that there was no way a computer could choose a move like that
- He asked to see the logs and IBM refused to show them
- He requested a rematch but IBM soon after dismantled the computer and ended all work on the chess computer
- Many believe Kasparov was still the better player but let emotions get the best of him
System overview (Deep Blue 1997)

- Massively Parallel
- 30 nodes
 - 30 P2SC processor (one per node)
 - 28 @ 120Mhz, 2 @ 135 Mhz
 - 480 single chip chess search engines (16 per node)
 - 2 to 2.5 million chess positions per second each
 - Communicate with host through microchannel bus
 - 1 GB RAM per node
 - 4 GB disk per node
 - High Speed Switch for Communication
- AIX 4.2 Operating system
System overview (Deep Blue 1997)

- Works on chess game “tree searches”
- Three layers
 - Master
 - One node is the master
 - Searches top level of tree and then distributes “leaf” positions to workers
 - Workers
 - Remaining nodes are workers
 - Compute a few levels of addition search and then distribute to chess chips
 - Chess chips
 - Finish searching through tree structure
- Can evaluate 100 to 200 million positions/second depending on board status
 - Averaged 126 million positions per second against Kasparov
- Could average 12.2 moves ahead in a 3 minute search
The Chess Chip

- 1.5 Million Transistors
- 0.6 micron CMOS technology
- 24 MHz
- 2-2.5 million positions per second
 - 1 position was roughly 40,000 instructions on a general purpose processor
 - Equivalent to 100 billion instructions per second on normal processor
- 3 Main parts
 - Move Generator
 - Evaluation Function
 - Search Control
The Chess Chip

The move generator, an 8 × 8 array of combinational logic, appears in the die photo as the block at the upper right. All the sub-blocks to the right of the move generator belong to the evaluation function. The lower sub-blocks provide fast evaluation. The upper sub-blocks, the systolic evaluation array, the pipelined evaluation RAMs, and the pipelined postevaluation logic compute slow evaluation.
Move generator

● 8 × 8 array of combinatorial logic
 ○ effectively a silicon chessboard
● Controlled by finite state machine
● Computes all moves at one time and selects one to work on further
● Order of selected moves
 ○ Low valued piece captures high valued piece
 ○ High valued piece captures low valued piece
 ○ No capture
● Keeps list of already searched moves
Evaluation Function

- Evaluates different “features” of a chess position such as
 - square control
 - pins
 - skewers
 - king safety
 - pawn structure
 - development
 - passed pawns
 - pawn majority
 - rook on the 7th
 - trapped pieces
 - and so on
Evaluation

- Each feature is given a programmable weighting
- 2 types, fast and slow
- Fast
 - Single clock cycle evaluation
 - Gives approximate score of position
 - Calculates fastest and most valuable features
- Slow
 - 3 clock cycle latency
 - 1 cycle per each column
 - 11 cycles total
Search Control

- Uses state machines
- Implements alpha beta search
- Has a move stack to keep track of previous searches
- Includes repetition detector
 - implemented as a 32-entry circular buffer of the last 32 moves
Figure C. A chess chip's basic search algorithm: search tree (left), flow chart (right).
Alpha Beta Pruning

- A form of pruning for efficiency of searching
 - Can go deeper without wasting calculations
- Alpha pruning - least bad thing can happen to you
- Beta pruning - least bad thing can happen to opponent
- Alpha example - Evaluate all my moves and all responses
 - Move #1 for me - worst outcome is opponent moves and we are even
 - Move #2 for me - find an outcome where opponent can capture a piece
 - No need to continue to evaluate move #2 as the outcome would be worse
- Beta
 - Include another move
 - Ignore cases where there is a better move for opponent
Quiescence search

- Also called capture search
- A side has the choice of capturing a piece or accepting a position
 - If capturing a piece the opponent has a chance to decide between the two as well
- Can go on for many moves
 - until one side runs out of captures or until one side decides to take the position as is
- Includes other types of forcing moves
 - Example - checking moves
Quiescence search

- Average of going 4 moves deeper
- A program with quiescence search usually spends at least half of its computation time there
Parallelism

- Nodes communicate through message passing interface (MPI)
- Processors communicate with chess chip through Micro Channel bus
- Static processor hierarchy
 - 1 master node controls 29 worker nodes
 - Each worker node controls 16 chess chips
- Early iterations carried out on master
 - Not much parallelism and master has 16 chess chips so it can handle it
- As it gets deeper work gets distributed to nodes
 - Example - 12 move deep search (exhaustive)
 - 4 moves on master (x1000 new positions)
 - 4 moves on node processor (software) (x1000 new positions)
 - 4 moves on chess chips - could go deeper for specific cases as well
 - Software accounts for ⅔ depth but less than 1% of positions
Parallelism

- Uses tree structures for search whose complexity can vary widely based on positions
- As such load balancing is difficult
 - Handled by aborting long tasks, sending to master for further splitting
- Workers could not directly communicate with each other (for simplicity)
- Master was the bottleneck
 - Ensured nodes had tasks on deck for when they finished
Parallelism

- At the system level, the chess chip appears as a 32-bit device with a 17-bit address space
 - Writing to some of the addresses initiates a search from the current position on the chip
 - Parameters are sent over the micro channel bus as well
 - Full width fixed depth is one of the important parameters which accounts for much of the processing time
- This frees up the host processor
 - Can perform overhead tasks
 - Initiate a search on another chip
 - Cancel a job that is taking too long
 - Poll for completion of search
 - Perform its own software search
- Built into the chess chip was the ability for FPGA expansion but was never implemented due to time constraints
Evaluation

- Scores moves by assigning a value to each move
 - Chess chip recognizes roughly 8000 different “features” used to score a move
- Features range from very simple to very complex
 - Simple example - a particular piece on a particular square
- A feature can be either static or dynamic
- Dynamic values are initialized at the beginning of a search but during the search they are scaled based on the board position
 - Example - king safety is sensitive to the amount of material on the board
Evaluation

- 54 registers for parameters
- 8096 tables for parameters
- 8150 total parameters that could be set for the evaluation function
- Most of the features and weights tuned by hand
- The Deep Blue scores are composed of two 16-bit signed integers
 - Positive for good scores negative for bad scores
 - The regular search score is in one integer
 - The tie breaker score is in the other
 - If the computer should propose a draw
Other strategy

- Depending on the situation three different “books” were used
 - Opening book
 - Extended book
 - Endgame book
- The opening book in Deep Blue was created by hand, primarily by Grandmaster Joel Benjamin
- The opening book consisted of about 4000 positions,
- Openings were chosen to emphasize positions that Deep Blue played well.
- Prior to a game, a particular repertoire was chosen for Deep Blue.
 - There were a number of possible repertoires to choose from
 - The choice would be made on the basis of
 ▪ the match situation
 ▪ the previous experience playing with the same color.
The extended book

- Large Grandmaster game database
 - Used to influence Deep Blue’s moves
- Summarize the information available at each position of a 700,000 game database
- Use the summary information to push Deep Blue in the consensus direction of chess theory
- Bonuses or penalties were assigned to moves in a given position that had been played in the Grandmaster game database
Extended book factors

- **The number of times a move has been played**
 - A move frequently played by Grandmasters is likely to be good
- **Relative number of times a move has been played**
 - If move A has been played many more times than move B, then A is likely to be better
- **Strength of the players that play the moves**
 - A move played by Kasparov is more likely to be good than a move played by a low-ranked master
- **Recentness of the move**
 - A recently played move is likely to be good, an effect that can in some cases dominate other factors
- **Results of the move**
 - Successful moves are likely to be good
Extended book factors

- Commentary on the move.
 - Chess games are frequently annotated with the strong move or weak move indicators
- Game moves versus commentary moves.
 - Annotators of chess games suggest alternative moves
 - Game moves are considered more reliable than commentary moves
Endgame book

- Includes all chess positions with five or fewer pieces on the board
- Includes selected positions with six pieces
- The 30 processors in the system each contained the 4-piece and some important 5-piece databases on their local disk
- The rest were accessible through a 20GB raid storage
- Endgames were stored in the databases with one bit per position
- Not very useful against Kasparov
 - only used in 1 of the 6 matches
Time control

- Two time targets set before calculations
 - Normal target time
 - Time remaining/moves remaining
 - 40 moves in 2 hours against Kasparov
 - Panic target time
 - ⅓ time remaining
- Some buffer room was built into the calculations
Time control

- Under normal situations when the normal target time expires the best move is played
- Goes to panic time when the current best move is below a certain threshold
- Stops when
 - New move is found within the threshold
 - The iteration is completed
 - The panic time target is reached
- Went into panic time only once against Kasparov
References

- https://pdfs.semanticscholar.org/ad2c/1effcd7c3b7106e507396bd1a5fe00fa597.pdf
- https://upload.wikimedia.org/wikipedia/commons/thumb/9/91/AB_pruning.svg/400px-AB_pruning.svg.png
- https://chessprogramming.wikispaces.com/Alpha-Beta
- https://chessprogramming.wikispaces.com/Deep+Blue
- https://chessprogramming.wikispaces.com/Quiescence+Search
- BOOK: Deep Blue: An Artificial Intelligence Milestone