
CMPE550 - Shaaban
#1 Fall 2014 lec#7 10-15-2014

Static Compiler Optimization Techniques
• We examined the following static ISA/compiler techniques aimed at

improving pipelined CPU performance:
– Static pipeline scheduling.
– Loop unrolling.
– Static branch prediction.
– Static multiple instruction issue: VLIW.
– Conditional or predicted instructions/predication.
– Static speculation

• Here we examine two additional static compiler-based techniques:

– Loop-Level Parallelism (LLP) analysis:
• Detecting and enhancing loop iteration parallelism

– Greatest Common Divisor (GCD) test.
– Software pipelining (Symbolic loop unrolling).

• In addition a brief introduction to vector processing (Appendix G) is
included to emphasize the importance/origin of LLP analysis.

4th Edition: Appendix G.1-G.3, vector processing: Appendix F
(3rd Edition: Chapter 4.4, vector processing: Appendix G)

+ relationship to Data Parallelism

FYI}

1

2

e.g. IA-64
(EPIC)

CMPE550 - Shaaban
#2 Fall 2014 lec#7 10-15-2014

Modified from Loop-unrolling lecture # 3

Data Parallelism & Loop Level Parallelism (LLP)
• Data Parallelism: Similar independent/parallel computations on different

elements of arrays that usually result in independent (or parallel) loop iterations
when such computations are implemented as sequential programs.

• A common way to increase parallelism among instructions is to exploit data
parallelism among independent iterations of a loop

(e.g exploit Loop Level Parallelism, LLP).
– One method covered earlier to accomplish this is by unrolling the loop either

statically by the compiler, or dynamically by hardware, which increases the size of
the basic block present. This resulting larger basic block provides more
instructions that can be scheduled or re-ordered by the compiler/hardware to
eliminate more stall cycles.

• The following loop has parallel loop iterations since computations in each
iterations are data parallel and are performed on different elements of the arrays.

for (i=1; i<=1000; i=i+1;)
x[i] = x[i] + y[i];

• In supercomputing applications, data parallelism/LLP has been traditionally
exploited by vector ISAs/processors, utilizing vector instructions

– Vector instructions operate on a number of data items (vectors) producing
a vector of elements not just a single result value. The above loop might require
just four such instructions.

4 vector instructions:
Load Vector X
Load Vector Y
Add Vector X, X, Y
Store Vector X

Usually: Data Parallelism  LLP

LV
LV
ADDV
SV

Example

CMPE550 - Shaaban
#3 Fall 2014 lec#7 10-15-2014

Loop Unrolling Example
When scheduled for pipeline

Loop: L.D F0, 0(R1)
L.D F6,-8 (R1)
L.D F10, -16(R1)
L.D F14, -24(R1)
ADD.D F4, F0, F2
ADD.D F8, F6, F2
ADD.D F12, F10, F2
ADD.D F16, F14, F2
S.D F4, 0(R1)
S.D F8, -8(R1)
DADDUI R1, R1,# -32
S.D F12, 16(R1),F12
BNE R1,R2, Loop
S.D F16, 8(R1), F16 ;8-32 = -24

The execution time of the loop
has dropped to 14 cycles, or 14/4 = 3.5
clock cycles per element
compared to 7 before scheduling
and 6 when scheduled but unrolled.

Speedup = 6/3.5 = 1.7
Unrolling the loop exposed more
computations that can be scheduled
to minimize stalls by increasing the
size of the basic block from 5 instructions
in the original loop to 14 instructions
in the unrolled loop.

Larger Basic Block More ILP

From Lecture #3 (slide # 11)

for (i=1000; i>0; i=i-1)
x[i] = x[i] + s;

Note:
Independent Loop Iterations
Resulting from data parallel
operations on elements of array X

Loop unrolling exploits data parallelism
among independent iterations of a loop

Loop unrolled four times and scheduled

Exposed

i.e more ILP
exposed

Usually: Data Parallelism  LLP

CMPE550 - Shaaban
#4 Fall 2014 lec#7 10-15-2014

Loop-Level Parallelism (LLP) Analysis
• Loop-Level Parallelism (LLP) analysis focuses on whether data accesses in later

iterations of a loop are data dependent on data values produced in earlier
iterations and possibly making loop iterations independent (parallel).

e.g. in for (i=1; i<=1000; i++)
x[i] = x[i] + s;

the computation in each iteration is independent of the previous iterations and the
loop is thus parallel. The use of X[i] twice is within a single iteration.

 Thus loop iterations are parallel (or independent from each other).

• Loop-carried Data Dependence: A data dependence between different loop
iterations (data produced in an earlier iteration used in a later one).

• Not Loop-carried Data Dependence: Data dependence within the same loop
iteration.

• LLP analysis is important in software optimizations such as loop unrolling since it
usually requires loop iterations to be independent (and in vector processing).

• LLP analysis is normally done at the source code level or close to it since assembly
language and target machine code generation introduces loop-carried name
dependence in the registers used in the loop.

– Instruction level parallelism (ILP) analysis, on the other hand, is usually done when
instructions are generated by the compiler.

4th Edition: Appendix G.1-G.2 (3rd Edition: Chapter 4.4)

S1
(Body of Loop)

S1 S1 S1 S1

Dependency Graph

Iteration # 1 2 3 ….. 1000

…
Usually: Data Parallelism  LLP

Classification of Date Dependencies in Loops:

1

2

Between iterations or inter-iteration

Within an iteration or intra-iteration

CMPE550 - Shaaban
#5 Fall 2014 lec#7 10-15-2014

LLP Analysis Example 1
• In the loop:

for (i=1; i<=100; i=i+1) {
A[i+1] = A[i] + C[i]; /* S1 */
B[i+1] = B[i] + A[i+1];} /* S2 */

}
(Where A, B, C are distinct non-overlapping arrays)

– S2 uses the value A[i+1], computed by S1 in the same iteration. This
data dependence is within the same iteration (not a loop-carried data
dependence).
 does not prevent loop iteration parallelism.

– S1 uses a value computed by S1 in the earlier iteration, since iteration
i computes A[i+1] read in iteration i+1 (loop-carried dependence,
prevents parallelism). The same applies for S2 for B[i] and B[i+1]

These two data dependencies are loop-carried spanning more than one
iteration (two iterations) preventing loop parallelism.

S1

S2

S1

S2

Dependency Graph

Iteration # i i+1

A i+1

B i+1

A i+1 A i+1

Not Loop
Carried
Dependence
(within the
same iteration)

Loop-carried Dependence

In this example the loop carried dependencies form two dependency chains
starting from the very first iteration and ending at the last iteration

i.e. S1  S2 on A[i+1] Not loop-carried data dependence

i.e. S1  S1 on A[i] Loop-carried data dependence
S2  S2 on B[i] Loop-carried data dependence

Produced in previous iteration Produced in same iteration

Loop-level

CMPE550 - Shaaban
#6 Fall 2014 lec#7 10-15-2014

LLP Analysis Example 2
• In the loop:

for (i=1; i<=100; i=i+1) {
A[i] = A[i] + B[i]; /* S1 */
B[i+1] = C[i] + D[i]; /* S2 */

}
– S1 uses the value B[i] computed by S2 in the previous iteration (loop-

carried dependence)
– This dependence is not circular:

• S1 depends on S2 but S2 does not depend on S1.
– Can be made parallel by replacing the code with the following:

A[1] = A[1] + B[1];
for (i=1; i<=99; i=i+1) {

B[i+1] = C[i] + D[i];
A[i+1] = A[i+1] + B[i+1];

}
B[101] = C[100] + D[100];

Loop Start-up code

Loop Completion code

Parallel loop iterations
(data parallelism in computation
exposed in loop code)

S1

S2

S1

S2

Dependency Graph

Iteration # i i+1

B i+1

Loop-carried Dependence

i.e. S2  S1 on B[i] Loop-carried data dependence

i.e. loop

4th Edition: Appendix G.2 (3rd Edition: Chapter 4.4)

And does not form a data dependence chain

S2

S1 (From Next Iteration)

Illustrated
Next Slide

Very First S1

Very Last S2

CMPE550 - Shaaban
#7 Fall 2014 lec#7 10-15-2014

LLP Analysis Example 2
Original Loop:

A[100] = A[100] + B[100];

B[101] = C[100] + D[100];

A[1] = A[1] + B[1];

B[2] = C[1] + D[1];

A[2] = A[2] + B[2];

B[3] = C[2] + D[2];

A[99] = A[99] + B[99];

B[100] = C[99] + D[99];

A[100] = A[100] + B[100];

B[101] = C[100] + D[100];

A[1] = A[1] + B[1];

B[2] = C[1] + D[1];

A[2] = A[2] + B[2];

B[3] = C[2] + D[2];

A[99] = A[99] + B[99];

B[100] = C[99] + D[99];

for (i=1; i<=100; i=i+1) {
A[i] = A[i] + B[i]; /* S1 */
B[i+1] = C[i] + D[i]; /* S2 */

}

A[1] = A[1] + B[1];
for (i=1; i<=99; i=i+1) {

B[i+1] = C[i] + D[i];
A[i+1] = A[i+1] + B[i+1];

}
B[101] = C[100] + D[100];

Modified Parallel Loop:

Iteration 1 Iteration 2 Iteration 100Iteration 99

Loop-carried
Dependence

Loop Start-up code

Loop Completion code

Iteration 1
Iteration 98 Iteration 99

Not Loop
Carried
Dependence

.

.

. . . .

S1

S2

(one less iteration)

S1

S2

CMPE550 - Shaaban
#8 Fall 2014 lec#7 10-15-2014

ILP Compiler Support:
Loop-Carried Dependence Detection

• To detect loop-carried dependence in a loop, the Greatest Common
Divisor (GCD) test can be used by the compiler, which is based on the
following:

• If an array element with index: a x i + b is stored and element:
c x i + d of the same array is loaded later where index runs from m
to n, a dependence exists if the following two conditions hold:

1 There are two iteration indices, j and k , m  j , k  n
(i.e. within iteration limits)

2 The loop stores into an array element indexed by:
a x j + b

and later loads from the same array the element indexed by:
c x k + d

Thus:
a x j + b = c x k + d j < k

Produce or write (store) element with this Index

Later read (load) element with this index

Index of element read(loaded) laterIndex of element written (stored) earlier

m, n

i.e written to

Here a, b, c, d are constants

i.e later iteration

For access to elements of an array

CMPE550 - Shaaban
#9 Fall 2014 lec#7 10-15-2014

The Greatest Common Divisor (GCD) Test
• If a loop carried dependence exists, then :

GCD(c, a) must divide (d-b)
The GCD test is sufficient to guarantee no loop carried dependence
However there are cases where GCD test succeeds but no
dependence exits because GCD test does not take loop
bounds into account

Example:

for(i=1; i<=100; i=i+1) {
x[2*i+3] = x[2*i] * 5.0;

}

a = 2 b = 3 c = 2 d = 0
GCD(a, c) = 2

d - b = -3
2 does not divide -3  No loop carried dependence possible.

Index of element stored:
a x i + b

Index of element loaded:
c x i + d

+ 0

In an earlier iteration

In a later iteration

4th Edition: Appendix G.2 (3rd Edition: Chapter 4.4)

Index of written element:
a x i + b = 2i + 3

Index of read element:
c x i + d = 2i

For access to elements
of an array in a loop

CMPE550 - Shaaban
#10 Fall 2014 lec#7 10-15-2014

Showing Last Example Loop Iterations
to Be Independent

for(i=1; i<=100; i=i+1) {
x[2*i+3] = x[2*i] * 5.0;
}

Iteration i Index of x loaded Index of x stored

2
4
6
8
10
12
14

5
7
9
11
13
15
17

Index of element stored:
a x i + b

Index of element loaded:
c x i + d

a = 2 b = 3 c = 2 d = 0

GCD(a, c) = 2
d - b = -3
2 does not divide -3

 No dependence possible.
What if GCD (a, c)
divided d - b ?

a x i + b
= 2 x i + 3

c x i + d
= 2 x i + 0

1
2
3
4
5
6
7

x[1] x[2] x[3] x[4] x[5] x[6] x[7] x[8] x[9] x[10] x[11] x[12] x[13] x[14] x[15] x[16] x[17] x[18]

i = 1 i = 2 i = 3 i = 4 i = 5 i = 6 i = 7

For example from last slide

CMPE550 - Shaaban
#11 Fall 2014 lec#7 10-15-2014

ILP Compiler Support:
Software Pipelining (Symbolic Loop Unrolling)
– A compiler technique where loops are reorganized:

• Each new iteration is made from instructions selected
from a number of independent iterations of the original
loop.

– The instructions are selected to separate dependent
instructions within the original loop iteration.

– No actual loop-unrolling is performed.
• A software equivalent to the Tomasulo approach?

– Requires:
• Additional start-up code to execute code left out from

the first original loop iterations.
• Additional finish code to execute instructions left out

from the last original loop iterations.

By one or more
new iterations

This static optimization is done at machine code level

i.e parallel iterations

4th Edition: Appendix G.3 (3rd Edition: Chapter 4.4)

Why?

CMPE550 - Shaaban
#12 Fall 2014 lec#7 10-15-2014

Software Pipelining (Symbolic Loop Unrolling)

New loop iteration body is made from instructions selected
from a number of independent iterations of the original loop.
Purpose: Separate dependent instructions by one or more loop iterations.

4th Edition: Appendix G.3 (3rd Edition: Chapter 4.4)

Start new iteration
With last instruction
of dependency chain

Original Loop Iterations (Parallel

New Iteration

CMPE550 - Shaaban
#13 Fall 2014 lec#7 10-15-2014

Software Pipelining (Symbolic Loop Unrolling) Example

Before: Unrolled 3 times
1 L.D F0,0(R1)
2 ADD.D F4,F0,F2
3 S.D F4,0(R1)
4 L.D F0,-8(R1)
5 ADD.D F4,F0,F2
6 S.D F4,-8(R1)
7 L.D F0,-16(R1)
8 ADD.D F4,F0,F2
9 S.D F4,-16(R1)
10 DADDUI R1,R1,#-24
11 BNE R1,R2,LOOP

After: Software Pipelined Version
L.D F0,0(R1)
ADD.D F4,F0,F2
L.D F0,-8(R1)

1 S.D F4,0(R1) ;Stores M[i]
2 ADD.D F4,F0,F2 ;Adds to M[i-1]
3 L.D F0,-16(R1);Loads M[i-2]
4 DADDUI R1,R1,#-8
5 BNE R1,R2,LOOP

S.D F4, 0(R1)
ADDD F4,F0,F2
S.D F4,-8(R1)

Show a software-pipelined version of the code: Software Pipeline

Loop Unrolled

ov
er

la
pp

ed
 o

ps

Time

Time

finish
code

start-up
code

start-up
code

finish
code

2 fewer loop iterations

3 times because chain of dependence of length 3 instructions
exist in body of original loop

Loop: L.D F0,0(R1)
ADD.D F4,F0,F2
S.D F4,0(R1)
DADDUI R1,R1,#-8
BNE R1,R2,LOOP

LOOP: }

}

i.e. L.D ADD.D S.D

No actual loop unrolling is done (do not rename registers)

1

It
er

at
io

n

2

3

No Branch delay slot in this example

New
Loop

CMPE550 - Shaaban
#14 Fall 2014 lec#7 10-15-2014

Software Pipelining Example Illustrated
Assuming 6 original iterations
(for illustration purposes):

L.D F0,0(R1)
ADD.D F4,F0,F2
S.D F4,0(R1)

L.D

ADD.D

S.D

L.D

ADD.D

S.D

L.D

ADD.D

S.D

L.D

ADD.D

S.D

L.D

ADD.D

S.D

L.D

ADD.D

S.D

4 Software Pipelined loop iterations (2 fewer iterations)

1 2 3 4 5 6

1 2 3 4
finish
code

start-up
code

Loop Body of software Pipelined Version

Body
of original loop

CMPE550 - Shaaban
#15 Fall 2014 lec#7 10-15-2014

• Limits to conventional exploitation of ILP:
1) Pipelined clock rate: Increasing clock rate requires deeper

pipelines with longer pipeline latency which increases the CPI
increase (longer branch penalty , other hazards).

2) Instruction Issue Rate: Limited instruction level parallelism (ILP)
reduces actual instruction issue/completion rate. (vertical &
horizontal waste)

3) Cache hit rate: Data-intensive scientific programs have very large
data sets accessed with poor locality; others have continuous data
streams (multimedia) and hence poor locality. (poor memory
latency hiding).

4) Data Parallelism: Poor exploitation of data parallelism present in
many scientific and multimedia applications, where similar
independent computations are performed on large arrays of data
(Limited ISA, hardware support).

• As a result, actual achieved performance is much less than peak
potential performance and low computational energy efficiency
(computations/watt)

Problems with Superscalar approach
Motivation for Vector Processing:

From Advanced Computer Architecture (EECC722), Appendix F (4th) Appendix G (3rd)

CMPE550 - Shaaban
#16 Fall 2014 lec#7 10-15-2014

Flynn’s 1972 Classification of Computer
Architecture

• Single Instruction stream over a Single Data stream
(SISD): Conventional sequential machines
(e.g single-threaded processors: Superscalar, VLIW ..).

• Single Instruction stream over Multiple Data streams (SIMD):
Vector computers, array of synchronized processing elements.
(exploit data parallelism)

• Multiple Instruction streams and a Single Data stream (MISD):
Systolic arrays for pipelined execution.

• Multiple Instruction streams over Multiple Data streams (MIMD):
Parallel computers:

• Shared memory multiprocessors (e.g. SMP, CMP, NUMA,
SMT)

• Multicomputers: Unshared distributed memory, message-
passing used instead (e.g Computer Clusters)

From Multiple Processor Systems EECC756 Lecture 1

Parallel Processor Systems: Exploit Thread Level Parallelism (TLP)

SISD

SIMD

MISD

MIMD

AKA Data Parallel Systems

CMPE550 - Shaaban
#17 Fall 2014 lec#7 10-15-2014

Vector Processing

+

r1 r2

r3

Add.d F3, F1, F2

SCALAR
(1 operation)

v1 v2

v3

+

vector
length

addv.d v3, v1, v2

VECTOR
(N operations)

• Vector processing exploits data parallelism by performing the same computation
on linear arrays of numbers "vectors” using one instruction.

• The maximum number of elements in a vector supported by a vector ISA is
referred to as the Maximum Vector Length (MVL).

Scalar
ISA

(RISC
or CISC)

Vector
ISA

Up to
Maximum
Vector
Length
(MVL)

Typical MVL = 64 (Cray)

Add vector

Appendix F (4th) Appendix G (3rd)

CMPE550 - Shaaban
#18 Fall 2014 lec#7 10-15-2014

Properties of Vector Processors/ISAs
• Each result in a vector operation is independent of

previous results (Data Parallelism, LLP exploited)
=> Multiple pipelined Functional units (lanes) usually used, vector
compiler ensures no dependencies between computations on elements
of a single vector instruction
=> higher clock rate (less complexity)

• Vector instructions access memory with known patterns
=> Highly interleaved memory with multiple banks used to provide

the high bandwidth needed and hide memory latency.
=> Amortize memory latency of over many vector elements
=> No (data) caches usually used. (Do use instruction cache)

• A single vector instruction implies a large number of
computations (replacing loops or reducing number of
iterations needed)
=> Fewer instructions fetched/executed.
=> Reduces branches and branch problems (control hazards) in pipelines.

By a factor of MVL

As if loop-unrolling by default MVL times?
Appendix F (4th) Appendix G (3rd)

CMPE550 - Shaaban
#19 Fall 2014 lec#7 10-15-2014

Changes to Scalar Processor to Run Vector
Instructions

• A vector processor typically consists of an ordinary pipelined scalar unit plus
a vector unit.

• The scalar unit is basically not different than advanced pipelined CPUs,
commercial vector machines have included both out-of-order scalar units
(NEC SX/5) and VLIW scalar units (Fujitsu VPP5000).

• Computations that don’t run in vector mode don’t have high ILP, so can
make scalar CPU simple (e.g in-order).

• The vector unit supports a vector ISA including decoding of vector
instructions which includes:

– Vector functional units.
– ISA vector register bank, vector control registers (vector length, mask)
– Vector memory Load-Store Units (LSUs).
– Multi-banked main memory (to support the high data bandwidth

needed, data cache not usually used)
• Send scalar registers to vector unit (for vector-scalar ops).
• Synchronization for results back from vector register, including exceptions.

1

2

1

2

3

4

Appendix F (4th) Appendix G (3rd)

CMPE550 - Shaaban
#20 Fall 2014 lec#7 10-15-2014

Basic Types of Vector Architecture

• Types of architecture for vector ISAs/processors:
– Memory-memory vector ISAs/processors:

All vector operations are memory to memory
– Vector-register ISAs/processors:

All vector operations between vector registers (except
load and store)

• Vector equivalent of load-store architectures (ISAs)
• Includes all vector machines since the late 1980

Cray, Convex, Fujitsu, Hitachi, NEC

(ISAs)

Appendix F (4th) Appendix G (3rd)

CMPE550 - Shaaban
#21 Fall 2014 lec#7 10-15-2014

Basic Structure of Vector Register
Architecture (Vector MIPS)

VLR
Vector Length Register

VM
Vector Mask Register

Vector Load-Store
Units (LSUs)

Multi-Banked
memory
for bandwidth
and latency-hiding Pipelined

Vector Functional Units

Vector Control Registers

Each Vector Register
has MVL elements
(each 64 bits)

MVL = Maximum Vector Length

Typical MVL = 64 (Cray)
MVL range 64-4096 (4K)

1

2

3

4

Appendix F (4th) Appendix G (3rd)

8-Bytes Each

CMPE550 - Shaaban
#22 Fall 2014 lec#7 10-15-2014

Example Vector-Register Architectures

Appendix F (4th) Appendix G (3rd) VMIPS = Vector MIPS

First Vector
Supercomputer
Cray 1 (1976)
133 MFLOPS/s
(Peak)

CMPE550 - Shaaban
#23 Fall 2014 lec#7 10-15-2014

The VMIPS Vector FP Instructions

Vector FP

Vector
Memory

Vector Index

Vector Mask

Vector Length

In VMIPS: Maximum Vector Length = MVL = 64

VMIPS = Vector MIPS

8 Vector Registers
V0-V7
MVL = 64
(Similar to Cray)

1- Unit Stride
Access

2- Constant Stride
Access

3- Variable Stride
Access (indexed)

Vector Control Registers: VM = Vector Mask
VLR = Vector Length Register

Appendix F (4th)
Appendix G (3rd)

CMPE550 - Shaaban
#24 Fall 2014 lec#7 10-15-2014

DAXPY (Y = a * X + Y)

L.D F0,a
DADDIU R4,Rx,#512 ;last address to load

loop: L.D F2, 0(Rx) ;load X(i)
MUL.D F2,F0,F2 ;a*X(i)
L.D F4, 0(Ry) ;load Y(i)
ADD.D F4,F2, F4 ;a*X(i) + Y(i)
S.D F4 ,0(Ry) ;store into Y(i)
DADDIU Rx,Rx,#8 ;increment index to X
DADDIU Ry,Ry,#8 ;increment index to Y
DSUBU R20,R4,Rx ;compute bound
BNEZ R20,loop ;check if done

L.D F0,a ;load scalar a
LV V1,Rx ;load vector X
MULVS.D V2,V1,F0 ;vector-scalar mult.
LV V3,Ry ;load vector Y
ADDV.D V4,V2,V3 ;add
SV Ry,V4 ;store the result

Assuming vectors X, Y
are length 64 =MVL

Scalar vs. Vector

578 (2+9*64) vs.
321 (1+5*64) ops (1.8X)
578 (2+9*64) vs.

6 instructions (96X)
64 operation vectors +
no loop overhead
also 64X fewer pipeline
hazards

VLR = 64
VM = (1,1,1,1 ..1)

As if the scalar loop code was unrolled MVL = 64 times:
Every vector instruction replaces 64 scalar instructions.

Scalar Vs. Vector Code

Scalar Vs. Vector
Code Example

Unroll? What does loop unrolling accomplish?

Does it have good data
Parallelism?
Indication?

Vector Control Registers:
VM = Vector Mask
VLR = Vector Length Register

CMPE550 - Shaaban
#25 Fall 2014 lec#7 10-15-2014

Vector/SIMD/Multimedia Scalar ISA Extensions
• Vector or Multimedia ISA Extensions: Limited vector instructions added to

scalar RISC/CISC ISAs with MVL = 2-8
• Example: Intel MMX: 57 new x86 instructions (1st since 386)

– similar to Intel 860, Mot. 88110, HP PA-71000LC, UltraSPARC ...
– 3 integer vector element types: 8 8-bit (MVL =8), 4 16-bit (MVL =4) , 2 32-

bit (MVL =2) in packed in 64 bit registers
• reuse 8 FP registers (FP and MMX cannot mix)

short vector: load, add, store 8, 8-bit operands

– Claim: overall speedup 1.5 to 2X for multimedia applications (2D/3D
graphics, audio, video, speech …)

• Intel SSE (Streaming SIMD Extensions) adds support for FP with MVL
=2 to MMX

• Intel SSE2 Adds support of FP with MVL = 4 (4 single FP in 128 bit
registers), 2 double FP MVL = 2, to SSE

+

MVL = 8
for byte elements

Major Issue: Efficiently meeting the increased data memory bandwidth
requirements of such instructions

MMX

Why? Improved exploitation of data parallelism
in scalar ISAs/processors

