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Static Compiler Optimization Techniques
• We examined the following static ISA/compiler techniques aimed at 

improving pipelined CPU performance:
– Static pipeline scheduling.
– Loop unrolling.
– Static branch prediction.
– Static multiple instruction issue:  VLIW.
– Conditional or predicted instructions/predication.
– Static speculation

• Here we examine two additional static compiler-based techniques:

– Loop-Level Parallelism (LLP) analysis:
• Detecting and enhancing loop iteration parallelism

– Greatest Common Divisor (GCD) test.
– Software pipelining (Symbolic loop unrolling).

• In addition a brief introduction to vector processing (Appendix G) is 
included to emphasize the importance/origin of LLP analysis. 

4th Edition: Appendix G.1-G.3, vector processing: Appendix F
(3rd Edition: Chapter 4.4, vector processing: Appendix G)

+ relationship to Data Parallelism

FYI}

1

2

e.g. IA-64
(EPIC)
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Modified from Loop-unrolling lecture # 3 

Data Parallelism & Loop Level Parallelism (LLP)
• Data Parallelism: Similar independent/parallel  computations on different 

elements of arrays that usually result in independent (or parallel) loop iterations
when such computations are implemented as sequential programs.

• A common way to increase parallelism among instructions is to exploit data 
parallelism among independent iterations of a loop

(e.g exploit Loop Level Parallelism, LLP).
– One method covered earlier to accomplish this is by unrolling the loop either 

statically by the compiler, or dynamically by hardware, which increases the size of 
the basic block present.  This resulting larger basic block provides more 
instructions that can be scheduled or re-ordered by the compiler/hardware to 
eliminate more stall cycles.

• The following loop has parallel loop iterations since computations in each 
iterations are data parallel and are performed on different elements of the arrays.  

for (i=1; i<=1000; i=i+1;)
x[i] = x[i] + y[i];

• In supercomputing applications, data parallelism/LLP has been traditionally 
exploited by vector ISAs/processors, utilizing vector instructions

– Vector instructions operate on a number of data items (vectors) producing             
a vector of elements not just a single result value.  The above loop might require 
just four such instructions.

4 vector instructions:
Load Vector X
Load Vector Y
Add Vector X, X, Y
Store Vector X

Usually:   Data Parallelism  LLP

LV
LV
ADDV
SV

Example
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Loop Unrolling Example
When scheduled for pipeline

Loop:    L.D             F0, 0(R1)
L.D             F6,-8 (R1)
L.D             F10, -16(R1)
L.D             F14, -24(R1)
ADD.D       F4, F0, F2
ADD.D       F8, F6, F2
ADD.D       F12, F10, F2
ADD.D       F16, F14, F2
S.D             F4, 0(R1)
S.D             F8, -8(R1)
DADDUI   R1, R1,# -32
S.D             F12, 16(R1),F12
BNE           R1,R2, Loop
S.D             F16, 8(R1), F16    ;8-32 = -24

The execution time of the loop
has dropped to 14 cycles, or 14/4 = 3.5 
clock cycles per element
compared to 7 before scheduling
and 6 when scheduled but unrolled.

Speedup = 6/3.5 = 1.7
Unrolling the loop exposed more 
computations that can be scheduled 
to minimize stalls by increasing the 
size of the basic block from 5 instructions
in the original loop to 14 instructions
in the unrolled loop.

Larger Basic Block            More ILP

From Lecture #3 (slide # 11)

for (i=1000; i>0; i=i-1)
x[i] = x[i] + s;

Note:
Independent Loop Iterations
Resulting from data parallel
operations on elements of array X

Loop unrolling exploits data parallelism 
among independent iterations of a loop

Loop unrolled four times and scheduled 

Exposed

i.e more ILP
exposed

Usually:   Data Parallelism  LLP
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Loop-Level Parallelism (LLP) Analysis
• Loop-Level Parallelism (LLP) analysis focuses on whether data accesses in later 

iterations of a loop are data dependent on data values produced in earlier 
iterations and possibly making loop iterations independent (parallel).

e.g.  in      for (i=1; i<=1000; i++)
x[i] = x[i] + s;

the computation in each iteration is independent of the  previous iterations and the 
loop is thus parallel. The use of  X[i] twice is within a single iteration.

 Thus loop iterations are parallel (or independent from each other).

• Loop-carried Data Dependence: A data dependence between different loop 
iterations (data produced in an earlier iteration used in a later one).

• Not Loop-carried Data Dependence: Data dependence within the same loop 
iteration.

• LLP analysis is important in software optimizations such as  loop unrolling since it 
usually requires loop iterations to be independent (and in vector processing).

• LLP analysis is normally done at the source code level or close to it since assembly 
language and target machine code generation introduces  loop-carried name 
dependence in the registers used in the loop.

– Instruction level parallelism (ILP) analysis, on the other hand, is usually done when 
instructions are generated by the compiler.

4th Edition: Appendix G.1-G.2 (3rd Edition: Chapter 4.4)

S1
(Body of Loop)

S1 S1 S1 S1

Dependency Graph

Iteration # 1               2                  3             …..           1000

…
Usually:   Data Parallelism  LLP

Classification of Date Dependencies in Loops:

1

2

Between iterations or inter-iteration

Within an iteration or intra-iteration
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LLP Analysis Example 1
• In the loop:

for (i=1; i<=100; i=i+1)  {
A[i+1] = A[i] + C[i]; /*  S1 */
B[i+1] = B[i] + A[i+1];} /* S2 */

}
(Where A, B, C are distinct non-overlapping arrays)

– S2 uses the value  A[i+1], computed by S1 in the same iteration.  This 
data dependence is within the same iteration  (not a loop-carried data 
dependence).
 does not prevent loop iteration parallelism. 

– S1 uses a value computed by S1 in the earlier iteration, since iteration 
i computes  A[i+1] read in iteration  i+1 (loop-carried dependence, 
prevents parallelism). The same applies for S2 for B[i] and B[i+1]

These two data dependencies are loop-carried spanning more than one 
iteration (two iterations) preventing loop parallelism.

S1

S2

S1

S2

Dependency Graph

Iteration # i                              i+1

A i+1

B i+1

A i+1 A i+1

Not Loop
Carried
Dependence
(within the
same iteration)

Loop-carried Dependence

In this example the loop carried dependencies  form two dependency chains 
starting from the very first iteration and ending at the last iteration

i.e.    S1   S2    on   A[i+1]    Not loop-carried data dependence

i.e.    S1   S1    on   A[i]    Loop-carried data dependence
S2   S2    on   B[i]    Loop-carried data dependence

Produced in previous iteration Produced in same iteration

Loop-level
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LLP Analysis Example 2
• In the loop:

for (i=1; i<=100; i=i+1) {
A[i] = A[i] + B[i]; /*  S1 */
B[i+1] = C[i] + D[i]; /*  S2 */ 

}
– S1 uses the value B[i] computed by S2 in the previous iteration (loop-

carried dependence)
– This dependence is not circular:

• S1 depends on S2 but S2 does not depend on S1.
– Can be made parallel by replacing the code with the following:

A[1] = A[1] + B[1];
for (i=1; i<=99; i=i+1)  {

B[i+1] = C[i] + D[i];
A[i+1] = A[i+1] + B[i+1];

}
B[101] = C[100] + D[100];

Loop Start-up code

Loop Completion code

Parallel  loop iterations
(data parallelism in computation
exposed in loop code)

S1

S2

S1

S2

Dependency Graph

Iteration # i                              i+1

B i+1

Loop-carried Dependence

i.e.    S2   S1    on   B[i]    Loop-carried data dependence

i.e. loop

4th Edition: Appendix G.2 (3rd Edition: Chapter 4.4)

And does not form a data dependence chain

S2

S1 (From Next Iteration)

Illustrated
Next Slide

Very First S1

Very Last S2
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LLP Analysis Example 2
Original Loop:

A[100] = A[100] + B[100];

B[101] = C[100] + D[100];

A[1] = A[1] + B[1];

B[2] = C[1] + D[1];

A[2] = A[2] + B[2];

B[3] = C[2] + D[2];

A[99] = A[99] + B[99];

B[100] = C[99] + D[99];

A[100] = A[100] + B[100];

B[101] = C[100] + D[100];

A[1] = A[1] + B[1];

B[2] = C[1] + D[1];

A[2] = A[2] + B[2];

B[3] = C[2] + D[2];

A[99] = A[99] + B[99];

B[100] = C[99] + D[99];

for (i=1; i<=100; i=i+1) {
A[i] = A[i] + B[i]; /*  S1 */
B[i+1] = C[i] + D[i]; /*  S2 */ 

}

A[1] = A[1] + B[1];
for (i=1; i<=99; i=i+1)  {

B[i+1] = C[i] + D[i];
A[i+1] = A[i+1] + B[i+1];

}
B[101] = C[100] + D[100];

Modified Parallel Loop:

Iteration 1 Iteration 2 Iteration 100Iteration 99

Loop-carried 
Dependence 

Loop Start-up code

Loop Completion code

Iteration 1
Iteration 98 Iteration 99

Not Loop
Carried 
Dependence

. . . . . .

. . . . . .

. . . .

S1

S2

(one less iteration)

S1

S2
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ILP Compiler Support: 
Loop-Carried Dependence Detection

• To detect loop-carried dependence in a loop, the Greatest Common 
Divisor (GCD) test can be used by the compiler, which is based on the 
following:

• If an array element with index: a  x  i  +  b is  stored and  element:           
c  x  i  +  d of the same array is  loaded later where index runs from  m
to  n, a dependence exists if the following two conditions hold:

1 There are two iteration indices,  j and  k ,   m  j ,   k   n
(i.e. within iteration limits)

2 The loop stores into an array element indexed by:
a  x  j  + b

and later loads from the same array the element indexed by:
c  x  k  +  d

Thus:   
a  x  j  +  b  =  c   x   k   +  d j  <  k

Produce or write (store) element with this Index

Later read (load) element with this index

Index of element read(loaded) laterIndex of element written (stored) earlier

m, n

i.e written to

Here  a, b, c, d  are constants

i.e later iteration

For access to elements of an array
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The Greatest Common Divisor (GCD) Test
• If a loop carried dependence exists, then :

GCD(c, a) must divide  (d-b)
The GCD test is sufficient to guarantee no loop carried dependence
However there are cases where GCD test succeeds but no 
dependence exits because GCD test does not take loop 
bounds into account

Example:

for(i=1; i<=100; i=i+1) {
x[2*i+3] = x[2*i] * 5.0;

}

a = 2     b = 3      c = 2      d = 0
GCD(a, c)  =   2

d - b =  -3   
2  does not divide -3   No loop carried dependence possible.

Index of element stored:
a  x  i  + b

Index of element loaded:
c  x  i  +  d

+ 0

In an earlier iteration

In a later iteration

4th Edition: Appendix G.2 (3rd Edition: Chapter 4.4)

Index of written element:
a  x  i  + b  = 2i + 3

Index of read element:
c  x  i  +  d = 2i

For access to elements 
of an array in a loop
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Showing Last Example Loop Iterations 
to Be Independent

for(i=1; i<=100; i=i+1) {
x[2*i+3] = x[2*i] * 5.0;
}

Iteration i            Index of  x  loaded             Index of x stored

2
4
6
8
10
12
14

5
7
9
11
13
15
17

Index of element stored:
a  x  i  + b

Index of element loaded:
c  x  i  +  d

a = 2     b = 3      c = 2      d = 0

GCD(a, c)  =   2
d - b =  -3   
2  does not divide -3 

 No dependence possible.
What if GCD (a, c)
divided  d - b  ?

a  x  i  + b
=  2 x  i  +  3

c  x  i  +  d
= 2 x  i   +  0

1
2
3
4
5
6
7

x[1]     x[2]      x[3]      x[4]     x[5]     x[6]      x[7]     x[8]       x[9]     x[10]    x[11]   x[12]    x[13]   x[14] x[15]    x[16]   x[17]   x[18]

i = 1 i = 2 i = 3 i = 4 i = 5 i = 6 i = 7

For example from last slide
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ILP Compiler Support:
Software Pipelining (Symbolic Loop Unrolling)
– A compiler technique where loops are reorganized:

• Each new iteration is made from instructions selected
from a number of independent iterations of the original 
loop.

– The instructions are selected to separate dependent
instructions within the original loop iteration.

– No actual loop-unrolling is performed.
• A software equivalent to the Tomasulo approach?

– Requires:
• Additional start-up code to execute code left out from 

the first original loop iterations.
• Additional finish code to execute instructions left out 

from the last original loop iterations.

By one or more
new iterations

This static optimization is done at machine code level

i.e parallel iterations

4th Edition: Appendix G.3 (3rd Edition: Chapter 4.4)

Why?
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Software Pipelining (Symbolic Loop Unrolling)

New loop iteration body is made from instructions selected
from a number of independent iterations of the original loop.
Purpose: Separate dependent instructions by one or more loop iterations.

4th Edition: Appendix G.3 (3rd Edition: Chapter 4.4)

Start new iteration
With last instruction 
of dependency chain

Original Loop Iterations (Parallel

New Iteration
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Software Pipelining (Symbolic Loop Unrolling) Example

Before:  Unrolled 3 times
1 L.D F0,0(R1)
2 ADD.D F4,F0,F2
3 S.D F4,0(R1)
4 L.D F0,-8(R1)
5 ADD.D F4,F0,F2
6 S.D F4,-8(R1)
7 L.D F0,-16(R1)
8 ADD.D F4,F0,F2
9 S.D F4,-16(R1)
10 DADDUI  R1,R1,#-24
11 BNE R1,R2,LOOP

After: Software Pipelined Version
L.D F0,0(R1)
ADD.D F4,F0,F2
L.D F0,-8(R1)

1 S.D F4,0(R1)  ;Stores M[i]
2 ADD.D F4,F0,F2  ;Adds to M[i-1]
3 L.D F0,-16(R1);Loads M[i-2]
4 DADDUI  R1,R1,#-8
5 BNE R1,R2,LOOP

S.D F4, 0(R1)
ADDD F4,F0,F2
S.D F4,-8(R1)

Show a software-pipelined version of the code: Software Pipeline

Loop Unrolled

ov
er

la
pp

ed
 o

ps

Time

Time

finish 
code

start-up 
code

start-up 
code

finish 
code

2 fewer loop iterations

3 times because chain of dependence of length 3 instructions
exist in body of original loop

Loop: L.D F0,0(R1)
ADD.D F4,F0,F2
S.D F4,0(R1)
DADDUI   R1,R1,#-8
BNE R1,R2,LOOP

LOOP: }

}

i.e.    L.D        ADD.D         S.D

No actual loop unrolling is done (do not rename registers)

1

It
er

at
io

n

2

3

No Branch delay slot in this example

New
Loop
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Software Pipelining Example Illustrated
Assuming 6 original iterations
(for illustration purposes):

L.D F0,0(R1)
ADD.D F4,F0,F2
S.D F4,0(R1)

L.D

ADD.D

S.D

L.D

ADD.D

S.D

L.D

ADD.D

S.D

L.D

ADD.D

S.D

L.D

ADD.D

S.D

L.D

ADD.D

S.D

4 Software Pipelined loop iterations  (2 fewer iterations)

1                      2                     3                        4                          5                         6

1                         2                     3                     4
finish 
code

start-up 
code

Loop Body of software Pipelined Version

Body
of  original  loop
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• Limits to conventional exploitation of ILP:
1) Pipelined clock rate:  Increasing clock rate requires deeper 

pipelines  with longer pipeline latency which increases the CPI 
increase (longer branch penalty , other hazards). 

2) Instruction Issue Rate:  Limited instruction level parallelism (ILP) 
reduces actual instruction issue/completion rate. (vertical & 
horizontal waste)

3) Cache hit rate:  Data-intensive scientific programs have very large 
data sets accessed with poor locality;  others have continuous data 
streams (multimedia) and hence poor locality.  (poor memory 
latency hiding).

4) Data Parallelism: Poor exploitation of data parallelism present in 
many scientific and multimedia applications, where similar 
independent computations are performed on large arrays of data 
(Limited ISA, hardware support).

• As a result, actual achieved performance is much less than peak 
potential performance and low computational energy efficiency 
(computations/watt)

Problems with Superscalar approach
Motivation for Vector Processing:

From Advanced Computer Architecture (EECC722), Appendix F (4th ) Appendix G (3rd )
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Flynn’s 1972 Classification of Computer 
Architecture

• Single Instruction stream over a Single Data stream 
(SISD):  Conventional sequential machines                                        
(e.g single-threaded processors: Superscalar, VLIW ..).

• Single Instruction stream over Multiple Data streams (SIMD):  
Vector computers, array of synchronized  processing elements. 
(exploit data parallelism)

• Multiple Instruction streams and a Single Data stream (MISD):  
Systolic arrays for pipelined execution.

• Multiple Instruction streams over Multiple Data streams (MIMD):  
Parallel computers:

• Shared memory multiprocessors (e.g. SMP, CMP, NUMA, 
SMT)

• Multicomputers:  Unshared distributed memory, message-
passing used instead (e.g Computer Clusters)

From Multiple Processor Systems EECC756 Lecture 1

Parallel Processor Systems:   Exploit Thread Level Parallelism (TLP)

SISD

SIMD

MISD

MIMD

AKA Data Parallel Systems
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Vector Processing

+

r1 r2

r3

Add.d F3, F1, F2

SCALAR
(1 operation)

v1 v2

v3

+

vector
length

addv.d v3, v1, v2

VECTOR
(N operations)

• Vector processing exploits data parallelism by performing the same computation 
on linear arrays of numbers "vectors” using one instruction.  

• The maximum number of elements in a vector supported by a vector ISA is 
referred to as the Maximum Vector Length (MVL).

Scalar
ISA

(RISC
or CISC)

Vector
ISA

Up to
Maximum
Vector
Length
(MVL)

Typical MVL = 64 (Cray)

Add vector

Appendix F (4th ) Appendix G (3rd )



CMPE550 - Shaaban
#18 Fall 2014  lec#7   10-15-2014

Properties of Vector Processors/ISAs
• Each result in a vector operation is independent of 

previous results (Data Parallelism, LLP exploited)
=> Multiple pipelined  Functional units (lanes) usually used, vector 
compiler ensures no dependencies between computations on elements 
of a single vector instruction 
=> higher clock rate (less complexity)

• Vector instructions access memory with known patterns
=> Highly interleaved memory with multiple banks used to provide       

the high bandwidth needed and hide memory latency.
=> Amortize memory latency of over many vector  elements
=> No (data) caches usually  used.  (Do use instruction cache)

• A single vector instruction implies a large number of 
computations (replacing  loops or reducing number of 
iterations needed)
=> Fewer instructions fetched/executed.
=>  Reduces branches and branch problems (control hazards) in pipelines.

By a factor of MVL

As if loop-unrolling by default MVL times?
Appendix F (4th ) Appendix G (3rd )
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Changes to Scalar Processor to Run Vector 
Instructions

• A vector processor typically consists of an ordinary pipelined scalar unit plus 
a vector unit.

• The scalar unit is basically not different than advanced pipelined CPUs, 
commercial vector machines have included both out-of-order scalar units 
(NEC SX/5) and VLIW scalar units (Fujitsu VPP5000).

• Computations that don’t run in vector mode  don’t have high ILP, so can 
make scalar CPU simple (e.g in-order).

• The vector unit supports a vector ISA including decoding of vector 
instructions which includes:

– Vector functional units.
– ISA vector register bank,  vector control registers (vector length, mask)
– Vector memory Load-Store Units (LSUs).
– Multi-banked main memory (to support the high data bandwidth 

needed, data cache not usually used)
• Send scalar registers to vector unit  (for vector-scalar ops).
• Synchronization for results back from vector register, including exceptions.

1

2

1

2

3

4

Appendix F (4th ) Appendix G (3rd )
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Basic Types of Vector Architecture

• Types of architecture for vector ISAs/processors:
– Memory-memory vector ISAs/processors:

All  vector operations are memory to memory
– Vector-register ISAs/processors:

All vector operations between vector registers (except 
load and store)

• Vector equivalent of load-store architectures (ISAs)
• Includes all vector machines since the late 1980

Cray, Convex, Fujitsu, Hitachi, NEC

(ISAs)

Appendix F (4th ) Appendix G (3rd )
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Basic Structure of Vector Register 
Architecture (Vector MIPS)

VLR 
Vector Length Register

VM 
Vector Mask Register

Vector Load-Store
Units  (LSUs)

Multi-Banked
memory
for bandwidth 
and latency-hiding Pipelined

Vector Functional Units

Vector Control Registers

Each Vector Register
has MVL elements
(each 64 bits)

MVL = Maximum Vector Length

Typical MVL = 64 (Cray)
MVL range 64-4096 (4K)

1

2

3

4

Appendix F (4th ) Appendix G (3rd )

8-Bytes Each
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Example Vector-Register Architectures

Appendix F (4th ) Appendix G (3rd ) VMIPS = Vector MIPS

First Vector 
Supercomputer
Cray 1 (1976)
133 MFLOPS/s
(Peak)
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The VMIPS Vector FP Instructions

Vector FP

Vector 
Memory

Vector Index

Vector Mask

Vector Length

In VMIPS:  Maximum Vector Length = MVL = 64

VMIPS = Vector MIPS

8 Vector Registers
V0-V7
MVL = 64
(Similar to Cray)

1- Unit Stride 
Access

2- Constant Stride 
Access

3- Variable Stride 
Access (indexed)

Vector Control Registers:  VM =  Vector Mask
VLR =  Vector Length Register

Appendix F (4th ) 
Appendix G (3rd )
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DAXPY (Y = a * X + Y)

L.D F0,a
DADDIU       R4,Rx,#512 ;last address to load 

loop:  L.D F2, 0(Rx)   ;load X(i)
MUL.D F2,F0,F2 ;a*X(i)
L.D F4, 0(Ry) ;load Y(i)
ADD.D F4,F2, F4 ;a*X(i) + Y(i)
S.D F4 ,0(Ry) ;store into Y(i)
DADDIU        Rx,Rx,#8 ;increment index to X
DADDIU        Ry,Ry,#8 ;increment index to Y
DSUBU R20,R4,Rx ;compute bound
BNEZ R20,loop ;check if done

L.D     F0,a ;load scalar a
LV     V1,Rx ;load vector X
MULVS.D V2,V1,F0 ;vector-scalar mult.
LV V3,Ry ;load vector Y
ADDV.D V4,V2,V3 ;add
SV Ry,V4 ;store the result

Assuming vectors X, Y 
are length 64 =MVL

Scalar vs. Vector

578 (2+9*64) vs.
321 (1+5*64) ops (1.8X)
578 (2+9*64) vs.

6 instructions (96X)
64 operation vectors +      
no loop overhead
also 64X fewer pipeline 
hazards

VLR = 64
VM = (1,1,1,1 ..1)

As if the scalar loop code was unrolled MVL = 64 times: 
Every vector instruction replaces  64 scalar instructions.

Scalar Vs. Vector Code

Scalar Vs. Vector
Code Example

Unroll?  What does loop unrolling accomplish?

Does it have good data
Parallelism?
Indication?

Vector Control Registers:  
VM =  Vector Mask
VLR =  Vector Length Register
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Vector/SIMD/Multimedia Scalar ISA Extensions
• Vector or Multimedia ISA Extensions: Limited vector instructions added to 

scalar RISC/CISC ISAs with MVL = 2-8
• Example: Intel MMX: 57 new x86 instructions (1st since 386)

– similar to Intel 860, Mot. 88110, HP PA-71000LC, UltraSPARC ...
– 3 integer vector element types: 8 8-bit (MVL =8), 4 16-bit (MVL =4) , 2 32-

bit (MVL =2) in packed in 64 bit registers
• reuse 8 FP registers (FP and MMX cannot mix)

short vector: load, add, store 8, 8-bit operands

– Claim: overall speedup 1.5 to 2X for multimedia applications (2D/3D 
graphics, audio, video, speech …)

• Intel SSE (Streaming SIMD Extensions) adds support for FP with MVL 
=2 to MMX

• Intel SSE2  Adds support of FP with MVL = 4 (4 single FP in 128 bit 
registers), 2 double FP MVL = 2, to SSE

+

MVL = 8
for byte elements

Major Issue: Efficiently meeting the increased data memory bandwidth 
requirements of such instructions

MMX

Why? Improved exploitation of data parallelism 
in scalar ISAs/processors


