
CMPE550 - Shaaban
#1 Fall 2014 lec#3 9-10-2014

• Pipelining and Instruction-Level Parallelism (ILP).
• Definition of basic instruction block
• Increasing Instruction-Level Parallelism (ILP) & Size of Basic

Block:
– Using Loop Unrolling

• MIPS Loop Unrolling Example.
• Loop Unrolling Requirements.
• Classification of Instruction Dependencies

– Data dependencies
– Name dependencies
– Control dependencies

Pipelining and Exploiting
Instruction-Level Parallelism (ILP)

In Fourth Edition: Chapter 2.1, 2.2
(In Third Edition: Chapter 3.1, 4.1)

Dependency Analysis
Dependency Graphs

Or exposing more ILP

A Static Optimization Technique

Static = At compilation time Dynamic = At run time

Pipeline Hazard Condition = Dependency Violation

CMPE550 - Shaaban
#2 Fall 2014 lec#3 9-10-2014

Pipelining and Exploiting
Instruction-Level Parallelism (ILP)

• Instruction-Level Parallelism (ILP) exists when instructions in a sequence
are independent and thus can be executed in parallel by overlapping.

– Pipelining increases performance by overlapping the execution of
independent instructions and thus exploits ILP in the code.

• Preventing instruction dependency violations (hazards) may result in stall
cycles in a pipelined CPU increasing its CPI (reducing performance).

– The CPI of a real-life pipeline is given by (assuming ideal memory):

Pipeline CPI = Ideal Pipeline CPI + Structural Stalls + RAW Stalls
+ WAR Stalls + WAW Stalls + Control Stalls

• Programs that have more ILP (fewer dependencies) tend to perform
better on pipelined CPUs.
– More ILP mean fewer instruction dependencies and thus fewer stall

cycles needed to prevent instruction dependency violations

In Fourth Edition Chapter 2.1
(In Third Edition Chapter 3.1)

(without stalling)

T = I x CPI x C

i.e hazards

Dependency Violation = Hazard

i.e instruction throughput

i.e non-ideal

CMPE550 - Shaaban
#3 Fall 2014 lec#3 9-10-2014

Instruction-Level Parallelism (ILP) Example

1 ADD.D F2, F4, F6
2 ADD.D F10, F6, F8
3 ADD.D F12, F12, F14

1

2

3

Dependency
Graph

1

2

3

Dependency
Graph1 ADD.D F2, F4, F6

2 ADD.D F10, F2, F8
3 ADD.D F12, F10, F2

Given the following two code sequences with three instructions each:

The instructions in the first code sequence above have no dependencies between the instructions.
Thus the three instructions are said be independent and can be executed in
parallel or in any order (re-ordered).
This code sequence is said to have a high degree of ILP.

The instructions in the second code sequence above have three data dependencies among them.
Instruction 2 depends on instruction 1
Instruction 3 depends on both instructions 1 and 2

Thus the instructions in the sequence are not independent and
cannot be executed in parallel
Thus the three instructions are said be independent and thus can be executed in
parallel and their order cannot be changed with causing incorrect execution.

This code sequence is said to have a lower degree of ILP.

More on dependency analysis and dependency graphs later in the lecture

Higher
ILP

Lower
ILP

Pr
og

ra
m

 O
rd

er
Pr

og
ra

m
 O

rd
er

Independent or parallel instructions. (no
dependencies exist): High ILP

Dependent instructions (three
dependencies exist): Lower ILP

stalls

stalls

CMPE550 - Shaaban
#4 Fall 2014 lec#3 9-10-2014

Basic Instruction Block
• A basic instruction block is a straight-line code sequence with no

branches in, except at the entry point, and no branches out
except at the exit point of the sequence.
– Example: Body of a loop.

• The amount of instruction-level parallelism (ILP) in a basic
block is limited by instruction dependence present and size of
the basic block.

• In typical integer code, dynamic branch frequency is about 15%
(resulting average basic block size of about 7 instructions).

• Any static technique that increases the average size of basic
blocks which increases the amount of exposed ILP in the code
and provide more instructions for static pipeline scheduling by
the compiler possibly eliminating more stall cycles and thus
improves pipelined CPU performance.
– Loop unrolling is one such technique that we examine next

Start of Basic Block

End of Basic Block

Static = At compilation time Dynamic = At run time

: :
: :

Branch In

Branch (out)

Basic
Block

In Fourth Edition Chapter 2.1 (In Third Edition Chapter 3.1)

1 2

CMPE550 - Shaaban
#5 Fall 2014 lec#3 9-10-2014

A
B
D
H

E
J

...

I

...

K

...

...
C
F
L

G
N...

...

M

O

...

Static Program
Order

Average Basic Block Size = 5-7 instructions

Program Control Flow Graph (CFG)

NT = Branch Not Taken
T = Branch Taken

• A-O = Basic Blocks terminating with conditional
branches

• The outcomes of branches determine the basic
block dynamic execution sequence or trace

If all three branches are taken
the execution trace will be basic
blocks: ACGO

Basic Blocks/Dynamic Execution Sequence (Trace) Example

Trace: Dynamic Sequence of basic blocks executed

Type of branches in this example:
“If-Then-Else” branches (not loops)

Start

Start

CMPE550 - Shaaban
#6 Fall 2014 lec#3 9-10-2014

Increasing Instruction-Level Parallelism (ILP)
• A common way to increase parallelism among instructions is to

exploit parallelism among iterations of a loop
– (i.e Loop Level Parallelism, LLP).

• This is accomplished by unrolling the loop either statically by the
compiler, or dynamically by hardware, which increases the size of
the basic block present. This resulting larger basic block
provides more instructions that can be scheduled or re-ordered
by the compiler to eliminate more stall cycles.

• In this loop every iteration can overlap with any other iteration.
Overlap within each iteration is minimal.

for (i=1; i<=1000; i=i+1;)
x[i] = x[i] + y[i];

• In vector machines, utilizing vector instructions is an important
alternative to exploit loop-level parallelism,

• Vector instructions operate on a number of data items. The
above loop would require just four such instructions.

4 vector instructions:
Load Vector X
Load Vector Y
Add Vector X, X, Y
Store Vector X

Or Data Parallelism in a loop

(potentially)

i.e independent or parallel loop iterations

Example:

Independent (parallel) loop iterations:
A result of high degree of data parallelism

In Fourth Edition Chapter 2.2 (In Third Edition Chapter 4.1)

CMPE550 - Shaaban
#7 Fall 2014 lec#3 9-10-2014

MIPS Loop Unrolling Example
• For the loop:

for (i=1000; i>0; i=i-1)
x[i] = x[i] + s;

The straightforward MIPS assembly code is given by:

Loop: L.D F0, 0 (R1) ;F0=array element
ADD.D F4, F0, F2 ;add scalar in F2 (constant)
S.D F4, 0(R1) ;store result
DADDUI R1, R1, # -8 ;decrement pointer 8 bytes
BNE R1, R2,Loop ;branch R1!=R2

R1 is initially the address of the element with highest address.
8(R2) is the address of the last element to operate on. Basic block size = 5 instructions

X[] array of double-precision floating-point numbers (8-bytes each)

X[1000]
X[999]

X[1]

R1 initially

points here

R2 points here

First element to
compute

High Memory

Low Memory

R2 +8 points here

.

.

.

.

R1 -8 points here

Last element to
compute

Note:
Independent
Loop Iterations

Initial value of R1 = R2 + 8000

S

Pr
og

ra
m

 O
rd

er

In Fourth Edition Chapter 2.2
(In Third Edition Chapter 4.1)

1

2

3

4

5

CMPE550 - Shaaban
#8 Fall 2014 lec#3 9-10-2014

MIPS FP Latency Assumptions Used
In Chapter 2.2

• All FP units assumed to be pipelined.
• The following FP operations latencies are used:

Instruction
Producing Result

FP ALU Op

FP ALU Op

Load Double

Load Double

Instruction
Using Result

Another FP ALU Op

Store Double

FP ALU Op

Store Double

Latency In
Clock Cycles

3

2

1

0

(or Number of
Stall Cycles)

- Branch resolved in decode stage, Branch penalty = 1 cycle
- Full forwarding is used
- Single Branch delay Slot
- Potential structural hazards ignored

i.e 4 execution
(EX) cycles for
FP instructions

For Loop Unrolling Example

i.e followed immediately by ..

Other Assumptions:

In Fourth Edition Chapter 2.2 (In Third Edition Chapter 4.1)

3rd Edition in 4.1

CMPE550 - Shaaban
#9 Fall 2014 lec#3 9-10-2014

Loop Unrolling Example (continued)
• This loop code is executed on the MIPS pipeline as follows:

(Branch resolved in decode stage, Branch penalty = 1 cycle, Full forwarding is used)

Scheduled with single delayed
branch slot:

Loop: L.D F0, 0(R1)
DADDUI R1, R1, # -8
ADD.D F4, F0, F2
stall
BNE R1,R2, Loop
S.D F4,8(R1)

6 cycles per iteration

No scheduling
Clock cycle

Loop: L.D F0, 0(R1) 1
stall 2
ADD.D F4, F0, F2 3
stall 4
stall 5
S.D F4, 0 (R1) 6
DADDUI R1, R1, # -8 7
stall 8
BNE R1,R2, Loop 9
stall 10

10 cycles per iteration 10/6 = 1.7 times faster

• Ignoring Pipeline Fill Cycles
• No Structural Hazards

Due to
resolving
branch
in ID S.D in branch delay slot

(Resulting stalls shown)

(Resulting stalls shown)
Cycle

1
2
3
4
5
6

Pr
og

ra
m

 O
rd

er

In Fourth Edition Chapter 2.2
(In Third Edition Chapter 4.1)

Offset
adjusted

Branch Delay Slot (Empty)

CMPE550 - Shaaban
#10 Fall 2014 lec#3 9-10-2014

Loop Unrolling Example (continued)

• The resulting loop code when four copies of the
loop body are unrolled without reuse of registers.

• The size of the basic block increased from 5
instructions in the original loop to 14 instructions.

No scheduling
Loop: L.D F0, 0(R1)

Stall

ADD.D F4, F0, F2
Stall
Stall

SD F4,0 (R1) ; drop DADDUI & BNE

LD F6, -8(R1)
Stall

ADDD F8, F6, F2
Stall
Stall

SD F8, -8 (R1), ; drop DADDUI & BNE

LD F10, -16(R1)
Stall

ADDD F12, F10, F2
Stall
Stall

SD F12, -16 (R1) ; drop DADDUI & BNE

LD F14, -24 (R1)
Stall

ADDD F16, F14, F2
Stall
Stall

SD F16, -24(R1)
DADDUI R1, R1, # -32
Stall

BNE R1, R2, Loop
Stall

Three branches and three
decrements of R1 are eliminated.

Load and store addresses are
changed to allow DADDUI
instructions to be merged.

The unrolled loop runs in 28 cycles
assuming each L.D has 1 stall
cycle, each ADD.D has 2 stall
cycles, the DADDUI 1 stall, the
branch 1 stall cycle, or 28/4 = 7
cycles to produce each of the four
elements.

1
2

3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

19
20
21
22
23
24
25
26
27
28

Cycle

i.e. unrolled four times
Note use of different registers for each iteration (register renaming)

Register
Renaming
Used

i.e 7 cycles for each original iteration

Loop unrolled 4 times

1

2

3

4

Iteration

(Resulting stalls shown)

New Basic Block Size = 14 Instructions

Performance:

In Fourth Edition Chapter 2.2
(In Third Edition Chapter 4.1)

28/4 =7 Cycles
per original
iteration

CMPE550 - Shaaban
#11 Fall 2014 lec#3 9-10-2014

Loop Unrolling Example (continued)

When scheduled for pipeline

Loop: L.D F0, 0(R1)
L.D F6,-8 (R1)
L.D F10, -16(R1)
L.D F14, -24(R1)
ADD.D F4, F0, F2
ADD.D F8, F6, F2
ADD.D F12, F10, F2
ADD.D F16, F14, F2
S.D F4, 0(R1)
S.D F8, -8(R1)
DADDUI R1, R1,# -32
S.D F12, 16(R1),F12
BNE R1,R2, Loop
S.D F16, 8(R1), F16 ;8-32 = -24

The execution time of the loop
has dropped to 14 cycles, or 14/4 = 3.5
clock cycles per element

compared to 7 before scheduling
and 6 when scheduled but unrolled.

Speedup = 6/3.5 = 1.7

Unrolling the loop exposed more
computations that can be scheduled
to minimize stalls by increasing the
size of the basic block from 5 instructions
in the original loop to 14 instructions
in the unrolled loop.

Larger Basic Block More ILP

i.e 3.5 cycles for each
original iteration

In branch delay slot

i.e more ILP
exposed

Exposed

Note: No stalls

Pr
og

ra
m

 O
rd

er

In Fourth Edition Chapter 2.2
(In Third Edition Chapter 4.1)

Basic Block size = 14 instructions vs. 5 (no unrolling)

Offset = 16 - 32 = -16

14/4 = 3.5 Cycles per original iteration

CMPE550 - Shaaban
#12 Fall 2014 lec#3 9-10-2014

Loop Unrolling Benefits & Requirements
• Loop unrolling improves performance in two ways:

– Larger basic block size: More instructions to schedule and thus possibly
more stall cycles are eliminated.

– Fewer instructions executed: Fewer branches and loop maintenance
instructions executed

• From the loop unrolling example, the following guidelines
where followed:
– Determine that unrolling the loop would be useful by finding that the

loop iterations where independent.
– Determine that it was legal to move S.D after DADDUI and BNE; find

the correct S.D offset.
– Use different registers (rename registers) to avoid constraints of using the

same registers (WAR, WAW). More registers are needed.
– Eliminate extra tests and branches and adjust loop maintenance code.
– Determine that loads and stores can be interchanged by observing

that they are independent from different loops.
– Schedule the code, preserving any dependencies needed to give the

same result as the original code.

More ILP exposed due to larger basic block

1

2

In Fourth Edition Chapter 2.2 (In Third Edition Chapter 4.1)

CMPE550 - Shaaban
#13 Fall 2014 lec#3 9-10-2014

Instruction Dependencies
• Determining instruction dependencies (dependency analysis) is important for

pipeline scheduling and to determine the amount of instruction level
parallelism (ILP) in the program to be exploited.

• Instruction Dependency Graph: A directed graph where graph nodes
represent instructions and graph edges represent instruction dependencies.

• If two instructions are independent or parallel (no dependencies between them
exist), they can be executed simultaneously in the pipeline without causing
stalls (no pipeline hazards); assuming the pipeline has sufficient resources (no
hardware hazards).

• Instructions that are dependent are not parallel and cannot be reordered by
the compiler or hardware.

• Instruction dependencies are classified as:

• Data dependencies

• Name dependencies
• Control dependencies

Name: Register Name
or Named Memory Location

Pipeline Hazard = Dependency Violation

Otherwise incorrect execution results

(or Flow)

In Fourth Edition Chapter 2.1 (In Third Edition Chapter 3.1)

(two types: anti-dependence and write dependence)

CMPE550 - Shaaban
#14 Fall 2014 lec#3 9-10-2014

• Instruction i precedes instruction j in the program sequence or order
• Instruction i produces a result used by instruction j,

– Then instruction j is said to be data dependent on instruction i
• Changing the relative execution order of i , j violates this data dependence

and results in in a RAW hazard and incorrect execution.

(True) Data Dependence

I (Write)

Shared
Operand

J (Read)

J data dependent on I
resulting in a Read after Write (RAW)
hazard if their relative execution order is changed

Dependency Graph Representation

I

J
Data Dependence

I
..
..

J

Program
Order

Also called: Data Flow Dependence or just Flow Dependence

i.e. A data dependence is violated i.e relative order of write
by I and read by J

e.g ADD.D F2, F1, F0

e.g ADD.D F8, F2, F9

e.g ADD.D F2, F1, F0

e.g ADD.D F8, F2, F9

i.e Data dependence violation = RAW Hazard

AKA Data Flow Dependence

e.g data value
produced by I

ji

ji

Producer

Consumer

CMPE550 - Shaaban
#15 Fall 2014 lec#3 9-10-2014

Instruction Data Dependencies
Given two instructions i, j where i precedes j in program order:
• Instruction j is data dependent on instruction i if:

– Instruction i produces a result used by instruction j, resulting in
a direct RAW hazard if their order is not maintained, or

– Instruction j is data dependent on instruction k and instruction
k is data dependent on instruction i which implies a chain of
data dependencies between the instructions.

Example: The arrows indicate data dependencies and point to the
dependent instruction which must follow and remain in the
original instruction order to ensure correct execution.

L.D F0, 0 (R1) ; F0=array element
ADD.D F4, F0, F2 ; add scalar in F2
S.D F4,0 (R1) ; store result

I
..
..

J

Program
Order

1

2

3

1

2

3

Dependency
Graph

(or Flow)

Example

In Fourth Edition Chapter 2.1 (In Third Edition Chapter 3.1)

i

k

j

i

k

j

Data Dependence Chain

CMPE550 - Shaaban
#16 Fall 2014 lec#3 9-10-2014

Instruction Name Dependencies
• A name dependence occurs when two instructions use (share) the

same register or memory location, called a name.
• No flow of data exist between the instructions involved in the name

dependency (i.e. no producer/consumer relationship)
• If instruction i precedes instruction j in program order then two

types of name dependencies can exist:

– An anti-dependence exists when j writes to the same register or
memory location that instruction i reads

• Anti-dependence violation: Relative read/write order is changed
– This results in a WAR hazard and thus the relative instruction

read/write and execution order must preserved.

– An output or (write) dependence exists when instruction i and j
write to the same register or memory location

• Output-dependence violation: Relative write order is changed
– This results in a WAW hazard and thus instruction write and

execution order must be preserved

I
..
..

J

Program
Order

Name: Register or Memory Location

(i.e the same name)

The Two Types of Name Dependence:

In Fourth Edition Chapter 2.1
(In Third Edition Chapter 3.1)

+

CMPE550 - Shaaban
#17 Fall 2014 lec#3 9-10-2014

Name Dependence Classification: Anti-Dependence

I (Read)

Shared
Name

J (Write)

J is anti-dependent on I
resulting in a Write after Read (WAR)
hazard if their relative execution order is changed

• Instruction i precedes instruction j in the program sequence or order
• Instruction i reads a value from a name (register or memory location)
• Instruction j writes a value to the same name (same register or memory location

read by i)
– Then instruction j is said to be anti-dependent on instruction i

• Changing the relative execution order of i , j violates this name dependence and
results in a WAR hazard and incorrect execution.

• This name dependence can be eliminated by “renaming” the shared name.

Dependency Graph Representation

I

J
Anti-dependence

I
..
..

J

Program
Order

Name: Register or Memory Location
i.e relative order of read
by I and write by J

e.g ADD.D F2, F1, F0

e.g ADD.D F1, F3, F4

i.e Anti-dependence violation = WAR Hazard

e.g F1

e.g ADD.D F2, F1, F0

e.g ADD.D F1, F3, F4

I J

I J

CMPE550 - Shaaban
#18 Fall 2014 lec#3 9-10-2014

Name Dependence Classification:
Output (or Write) Dependence

I (Write)

Shared
Name

J (Write)

J is output-dependent on I
resulting a Write after Write (WAW) hazard
if their relative execution order is changed

• Instruction i precedes instruction j in the program sequence or order
• Both instructions i , j write to the same name (same register or memory location)

– Then instruction j is said to be output-dependent on instruction i
• Changing the relative execution order of i , j violates this name dependence

and results in a WAW hazard and incorrect execution.
• This name dependence can also be eliminated by “renaming” the shared name.

Dependency Graph Representation

I

J
Output dependence

Name: Register or Memory Location

I
..
..

J

Program
Order

i.e relative order of write
by I and write by J

e.g ADD.D F2, F1, F0

e.g ADD.D F2, F5, F7

e.g F2

e.g ADD.D F2, F1, F0

e.g ADD.D F2, F5, F7

i.e Output-dependence violation = WAW Hazard

I J

I J

CMPE550 - Shaaban
#19 Fall 2014 lec#3 9-10-2014

Instruction Dependence Example
• For the following code identify all data and name dependence

between instructions and give the dependency graph
L.D F0, 0 (R1)
ADD.D F4, F0, F2
S.D F4, 0(R1)
L.D F0, -8(R1)
ADD.D F4, F0, F2
S.D F4, -8(R1)

1
2
3
4
5
6

True Data Dependence:
Instruction 2 depends on instruction 1 (instruction 1 result in F0 used by instruction 2), Similarly, instructions (4,5)

Instruction 3 depends on instruction 2 (instruction 2 result in F4 used by instruction 3) Similarly, instructions (5,6)

Name Dependence:
Output Name Dependence (WAW):

Instruction 1 has an output name dependence (WAW) over result register (name) F0 with instructions 4
Instruction 2 has an output name dependence (WAW) over result register (name) F4 with instructions 5

Anti-dependence (WAR):

Instruction 2 has an anti-dependence with instruction 4 over register (name) F0 which is an operand of instruction 1
and the result of instruction 4
Instruction 3 has an anti-dependence with instruction 5 over register (name) F4 which is an operand of instruction 3
and the result of instruction 5

Pr
og

ra
m

 O
rd

er

CMPE550 - Shaaban
#20 Fall 2014 lec#3 9-10-2014

Instruction Dependence Example
Dependency Graph

L.D F0, 0 (R1)
ADD.D F4, F0, F2
S.D F4, 0(R1)
L.D F0, -8(R1)
ADD.D F4, F0, F2
S.D F4, -8(R1)

1
2
3
4
5
6

L.D F0, 0 (R1)

1

ADD.D F4, F0, F2

2

S.D F4, 0(R1)

3

ADD.D F4, F0, F2

5
L.D F0, -8 (R1)

4

S.D F4, -8 (R1)

6 Can instruction 4 (second L.D) be moved
just after instruction 1 (first L.D)?
If not what dependencies are violated?

Date Dependence:
(1, 2) (2, 3) (4, 5) (5, 6)

Output Dependence:
(1, 4) (2, 5)

Anti-dependence:
(2, 4) (3, 5)

Can instruction 3 (first S.D) be moved
just after instruction 4 (second L.D)?
How about moving 3 after 5 (the second ADD.D)?
If not what dependencies are violated?

Example Code

What happens if we rename F0 to F6 and F4 to F8 in instructions 4, 5, 6?

Pr
og

ra
m

 O
rd

er

CMPE550 - Shaaban
#21 Fall 2014 lec#3 9-10-2014

Instruction Dependence Example
In the unrolled loop, using the
same registers results in name
(green) and data tendencies (red)

Loop: L.D F0, 0 (R1)
ADD.D F4, F0, F2
S.D F4, 0(R1)
L.D F0, -8(R1)
ADD.D F4, F0, F2
S.D F4, -8(R1)
L.D F0, -16(R1)
ADD.D F4, F0, F2
S.D F4, -16 (R1)
L.D F0, -24 (R1)
ADD.D F4, F0, F2
S.D F4, -24(R1)
DADDUI R1, R1, # -32
BNE R1, R2, Loop

1
2
3
4
5
6
7
8
9
10
11
12
13
14

From The Code to the left:

True Data Dependence (RAW) Examples:

Instruction 2 ADD.D F4, F0, F2
depends on instruction 1 L.D F0, 0 (R1)
(instruction 1 result in F0 used by instruction 2)
Similarly, instructions (4,5) (7,8) (10,11)

Instruction 3 S.D F4, 0(R1)
depends on instruction 2 ADD.D F4, F0, F2
(instruction 2 result in F4 used by instruction 3)
Similarly, instructions (5,6) (8,9) (11,12)

Name Dependence (WAR, WAW) Examples

Output Name Dependence (WAW) Examples:

Instruction 1 L.D F0, 0 (R1)
has an output name dependence (WAW) over result register
(name) F0 with instructions 4, 7, 10

Anti-dependence (WAR) Examples:
Instruction 2 ADD.D F4, F0, F2
has an anti-dependence (WAR) with
instruction 4 L.D F0, 0 (R1)
over register (name) F0 which is an operand of instruction 1
and the result of instruction 4
Similarly, an anti-dependence (WAR) over F0 exists
between instructions (5, 7) (8, 10)

No
Register
Renaming
Done

Pr
og

ra
m

 O
rd

er

In Fourth Edition Chapter 2.2 (In Third Edition Chapter 4.1)

CMPE550 - Shaaban
#22 Fall 2014 lec#3 9-10-2014

Renaming the registers used for each
copy of the loop body, only true data
dependencies remain
(Name dependencies are eliminated):

Loop: L.D F0, 0(R1)
ADD.D F4, F0, F2
S.D F4, 0(R1)
L.D F6, -8(R1)
ADD.D F8, F6, F2
S.D F8, -8 (R1)
L.D F10, -16(R1)
ADD.D F12, F10, F2
S.D F12, -16 (R1)
L.D F14, -24(R1)
ADD.D F16, F14, F2
S.D F16, -24(R1)
DADDUI R1, R1, # -32
BNE R1, R2,Loop

Name Dependence Removal
In the unrolled loop, using the
same registers results in name
(green) and data tendencies (red)

Loop: L.D F0, 0 (R1)
ADD.D F4, F0, F2
S.D F4, 0(R1)
L.D F0, -8(R1)
ADD.D F4, F0, F2
S.D F4, -8(R1)
L.D F0, -16(R1)
ADD.D F4, F0, F2
S.D F4, -16 (R1)
L.D F0, -24 (R1)
ADD.D F4, F0, F2
S.D F4, -24(R1)
DADDUI R1, R1, # -32
BNE R1, R2, Loop

As was done in
Loop unrolling
example

As shown above , name dependencies can be eliminated
by “renaming” the shared names
(renaming registers in this case, requiring more ISA registers).

Using Register Renaming

Pr
og

ra
m

 O
rd

er

i.e no register renaming done Using register renaming

In Fourth Edition Chapter 2.2
(In Third Edition Chapter 4.1)

CMPE550 - Shaaban
#23 Fall 2014 lec#3 9-10-2014

Control Dependencies
• Control dependence determines the ordering of an instruction with respect to a branch

(control) instruction.
• Every instruction in a program except those in the very first basic block of the program

is control dependent on some set of branches.

1. An instruction which is control dependent on a branch cannot be moved before the
branch so that its execution is no longer controlled by the branch.

2. An instruction which is not control dependent on the branch cannot be moved so that its
execution is controlled by the branch (in the then portion).
 Both scenarios lead a control dependence violation (control hazard).

• It’s possible in some cases to violate these constraints and still have correct execution.
• Example of control dependence in the then part of an if statement:

if p1 {
S1;

};
If p2 {

S2;
}

S1 is control dependent on p1
S2 is control dependent on p2 but not on p1

What happens if S1 is moved here?

Control Dependence Violation = Control Hazard

Conditional branch

Conditional branch

In Fourth Edition Chapter 2.1
(In Third Edition Chapter 3.1)

CMPE550 - Shaaban
#24 Fall 2014 lec#3 9-10-2014

Control Dependence Example
The unrolled loop code with the intermediate
branches still in place is shown here.

Branch conditions are complemented here
(BEQ instead of BNE, except last one) to allow
the fall-through to execute another loop.

BEQ instructions prevent the overlapping of
iterations for scheduling optimizations.
(4 basic blocks B0-B3 each 5 instructions)

Moving the instructions requires a change in
the control dependencies present.

Removing the intermediate branches changes
(removes) the internal control dependencies
present increasing basic block size (to 14) and
makes more optimizations (reordering) possible.

Loop: L.D F0, 0 (R1)
ADD.D F4, F0, F2
S.D F4,0 (R1)
DADDUI R1, R1, # -8
BEQ R1, R2, exit
L.D F6, 0 (R1)
ADD.D F8, F6, F2
S.D F8, 0 (R1)
DADDUI R1, R1, # -8
BEQ R1, R2, exit
L.D F10, 0 (R1)
ADD.D F12, F10, F2
S.D F12,0 (R1)
DADDUI R1, R1, # -8
BEQ R1, R2,exit
L.D F14, 0 (R1)
ADD.D F16, F14, F2
S.D F16, 0 (R1)
DADDUI R1, R1, # -8
BNE R1, R2,Loop

exit:

B0

B1

B2

B3

As seen previously in the loop unrolling example

Due to control dependencies

B0 – B3: Basic blocks, 5 instructions each

