
CMPE550 CMPE550 -- ShaabanShaaban
#1 Lec # 2 Fall 2017 9-5-2017

•• Instruction Pipelining Review:Instruction Pipelining Review:
–– MIPS InMIPS In--Order SingleOrder Single--Issue Integer PipelineIssue Integer Pipeline
–– Performance of Pipelines with StallsPerformance of Pipelines with Stalls
–– Pipeline HazardsPipeline Hazards

• Structural hazards
• Data hazards

–– Minimizing Data hazard Stalls by ForwardingMinimizing Data hazard Stalls by Forwarding
–– Data Hazard ClassificationData Hazard Classification
–– Data Hazards Present in Current MIPS PipelineData Hazards Present in Current MIPS Pipeline

• Control hazards
–– Reducing Branch Stall CyclesReducing Branch Stall Cycles
–– Static Compiler Branch PredictionStatic Compiler Branch Prediction
–– Delayed Branch SlotDelayed Branch Slot

•• Canceling Delayed Branch SlotCanceling Delayed Branch Slot

•• Pipelining and Handling of ExceptionsPipelining and Handling of Exceptions
– Precise exception Handling

•• Extending The MIPS Pipeline to Handle FloatingExtending The MIPS Pipeline to Handle Floating--Point OperationsPoint Operations
–– Pipeline Characteristics With FP SupportPipeline Characteristics With FP Support
–– Maintaining Precise Exceptions in FP/Multicycle PipeliningMaintaining Precise Exceptions in FP/Multicycle Pipelining

(In Appendix A)

Pipelined MIPS CPU Design from 350
(Comp. Org.)

CMPE550 CMPE550 -- ShaabanShaaban
#2 Lec # 2 Fall 2017 9-5-2017

Instruction Pipelining ReviewInstruction Pipelining Review
• Instruction pipelining is CPU implementation technique where multiple

operations on a number of instructions are overlapped.
– Instruction pipelining exploits Instruction-Level Parallelism (ILP)

• An instruction execution pipeline involves a number of steps, where each step
completes a part of an instruction. Each step is called a pipeline stage or a pipeline
segment.

• The stages or steps are connected in a linear fashion: one stage to the next to
form the pipeline -- instructions enter at one end and progress through the stages
and exit at the other end.

• The time to move an instruction one step down the pipeline is is equal to the
machine cycle and is determined by the stage with the longest processing delay.

• Pipelining increases the CPU instruction throughput: The number of instructions
completed per cycle.

– Under ideal conditions (no stall cycles), instruction throughput is one
instruction per machine cycle, or ideal CPI = 1

• Pipelining does not reduce the execution time of an individual instruction: The
time needed to complete all processing steps of an instruction (also called
instruction completion latency).
– Minimum instruction latency = n cycles, where n is the number of pipeline

stages
(In Appendix A and 350)

The pipeline described here is called an in-order pipeline because
instructions are processed or executed in the original program order

1 2 3 4 5

Pipelining may actually increase individual instruction latency

Order = Program order

Or IPC = 1 T = I x CPI x C

CMPE550 CMPE550 -- ShaabanShaaban
#3 Lec # 2 Fall 2017 9-5-2017

Generic CPU Machine Instruction Processing StepsGeneric CPU Machine Instruction Processing Steps

Instruction
Fetch

Instruction
Decode

Operand
Fetch

Execute

Result
Store

Next
Instruction

Obtain instruction from program storage

Determine required actions and instruction size

Locate and obtain operand data

Compute result value or status

Deposit results in storage for later use

Determine successor or next instruction

(Implied by The Von Neumann Computer Model)(Implied by The Von Neumann Computer Model)

Major CPU Performance Limitation: The Von Neumann computing modelNeumann computing model

implies implies sequential executionsequential execution one instruction at a timeone instruction at a time

The Program Counter (PC) points to next instruction to be processed

(i.e Update PC)

PC

Update PC

CMPE550 CMPE550 -- ShaabanShaaban
#4 Lec # 2 Fall 2017 9-5-2017

MIPS InMIPS In--Order SingleOrder Single--Issue Integer Pipeline Issue Integer Pipeline
Ideal OperationIdeal Operation

Clock Number Time in clock cycles →
Instruction Number 1 2 3 4 5 6 7 8 9

Instruction I IF ID EX MEM WB
Instruction I+1 IF ID EX MEM WB
Instruction I+2 IF ID EX MEM WB
Instruction I+3 IF ID EX MEM WB
Instruction I +4 IF ID EX MEM WB

Time to fill the pipeline

MIPS Pipeline Stages:

IF = Instruction Fetch
ID = Instruction Decode
EX = Execution
MEM = Memory Access
WB = Write Back

First instruction, I
Completed

Last instruction,
I+4 completed

n= 5 pipeline stages Ideal CPI =1

(In Appendix A)

Fill Cycles = number of stages -1

4 cycles = n -1 = 5 -1

(No stall cycles)

Ideal pipeline operation without any stall cycles
In-order = instructions executed in original program order

(or IPC =1)

(Classic 5-Stage)
Pr

og
ra

m
 O

rd
er

i.e execution in program order

1
2
3
4
5

CMPE550 CMPE550 -- ShaabanShaaban
#5 Lec # 2 Fall 2017 9-5-2017

A Pipelined MIPS Integer DatapathA Pipelined MIPS Integer Datapath
• Assume register writes occur in first half of cycle and register reads occur in second half.

(In Appendix A and 350)

Taken Branch Penalty = 4 -1 = 3 cycles

Branches resolved
Here in MEM (Stage 4)

IF

ID EX

MEM

WB

Classic Five Stage
Integer Single-Issue
In-Order Pipeline
for MIPS

Stage 1

Stage 2 Stage 3

Stage 4

Stage 5

Pipeline Version 1 (in 350): No Forwarding, Branch resolved in MEM stage

CMPE550 CMPE550 -- ShaabanShaaban
#6 Lec # 2 Fall 2017 9-5-2017

(In Appendix A and 350)

IF ID EX MEM WB

Read operand registers
in second half of ID cycle

Write destination register
in first half of WB cycle

Operation of ideal integer in-order 5-stage pipeline

1

2

3

4

5

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

CMPE550 CMPE550 -- ShaabanShaaban
#7 Lec # 2 Fall 2017 9-5-2017

Pipelining Performance ExamplePipelining Performance Example
• Example: For an unpipelined CPU:

– Clock cycle = 1ns, 4 cycles for ALU operations and branches
and 5 cycles for memory operations with instruction frequencies
of 40%, 20% and 40%, respectively.

– If pipelining adds 0.2 ns to the machine clock cycle then the
speedup in instruction execution from pipelining is:

Non-pipelined Average instruction execution time = Clock cycle x Average CPI

= 1 ns x ((40% + 20%) x 4 + 40%x 5) = 1 ns x 4.4 = 4.4 ns

In the pipelined implementation five stages are used with an
average instruction execution time of: 1 ns + 0.2 ns = 1.2 ns
Speedup from pipelining = Instruction time unpipelined

Instruction time pipelined
= 4.4 ns / 1.2 ns = 3.7 times faster

CPI = 1

CPI = 4.4

T = I x CPI x C here I did not change

CMPE550 CMPE550 -- ShaabanShaaban
#8 Lec # 2 Fall 2017 9-5-2017

Pipeline HazardsPipeline Hazards
• Hazards are situations in pipelining which may prevent the

next instruction in the instruction stream from executing
during the designated clock cycle possibly resulting in one or
more stall (or wait) cycles.

• Hazards reduce the ideal speedup (increase CPI > 1) gained
from pipelining and are classified into three classes:
– Structural hazards: Arise from hardware resource conflicts

when the available hardware cannot support all possible
combinations of instructions.

– Data hazards: Arise when an instruction depends on the
result of a previous instruction in a way that is exposed by the
overlapping of instructions in the pipeline

– Control hazards: Arise from the pipelining of conditional
branches and other instructions that change the PC

(In Appendix A and 350)

i.e A resource the instruction requires for correct
execution is not available in the cycle needed

Resource
Not available:

Hardware
Component

Correct
Operand
(data) value

Correct
PC

Hardware structure (component) conflict

Operand not ready yet
when needed in EX or ID

Correct PC not available when needed in IF

CMPE550 CMPE550 -- ShaabanShaaban
#9 Lec # 2 Fall 2017 9-5-2017

Performance of Pipelines with StallsPerformance of Pipelines with Stalls
• Hazard conditions in pipelines may make it necessary to stall the

pipeline by a number of cycles degrading performance from
the ideal pipelined CPU CPI of 1.

CPI pipelined = Ideal CPI + Pipeline stall clock cycles per instruction
= 1 + Pipeline stall clock cycles per instruction

• If pipelining overhead is ignored and we assume that the stages are
perfectly balanced then speedup from pipelining is given by:

Speedup = CPI unpipelined / CPI pipelined
= CPI unpipelined / (1 + Pipeline stall cycles per instruction)

• When all instructions in the multicycle CPU take the same number of
cycles equal to the number of pipeline stages then:

Speedup = Pipeline depth / (1 + Pipeline stall cycles per instruction)

(In Appendix A and 350)
T = I x CPI x C IPC= 1/CPI

Average

CMPE550 CMPE550 -- ShaabanShaaban
#10 Lec # 2 Fall 2017 9-5-2017

Structural (or Hardware) HazardsStructural (or Hardware) Hazards
• In pipelined machines overlapped instruction execution

requires pipelining of functional units and duplication of
resources to allow all possible combinations of instructions
in the pipeline.

• If a hardware resource conflict arises due to a hardware
resource being required by more than one instruction in a
single cycle, and one or more such instructions cannot be
accommodated, then a structural hazard has occurred,
for example:
– when a pipelined machine (CPU) has a shared single-

memory pipeline stage for data and instructions.
→ stall the pipeline for one cycle for memory data access

(In Appendix A and 350)

i.e A hardware component the instruction requires for correct
execution is not available in the cycle needed

e.g.

May need stall cycles to prevent hardware structures conflicts

i.e. Load/Store Instructions

CMPE550 CMPE550 -- ShaabanShaaban
#11 Lec # 2 Fall 2017 9-5-2017

MIPS with MemoryMIPS with Memory
Unit Structural HazardsUnit Structural Hazards

(In Appendix A and 350)

One shared memory for
instructions and data

Pr
og

ra
m

 O
rd

er

Or store

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM

CMPE550 CMPE550 -- ShaabanShaaban
#12 Lec # 2 Fall 2017 9-5-2017

Resolving A StructuralResolving A Structural
Hazard with StallingHazard with Stalling

(In Appendix A and 350)

One shared memory for
instructions and data

Stall or wait
Cycle

CPI = 1 + stall clock cycles per instruction = 1 + fraction of loads and stores x 1

Instructions 1-3 above are assumed to be instructions other than loads/stores

Pr
og

ra
m

 O
rd

er

Or store

IF ID EX MEM WB

IF ID EX MEM

CMPE550 CMPE550 -- ShaabanShaaban
#13 Lec # 2 Fall 2017 9-5-2017

A Structural Hazard ExampleA Structural Hazard Example
• Given that data references are 40% for a specific

instruction mix or program, and that the ideal pipelined
CPI ignoring hazards is equal to 1.

• A machine with a data memory access structural hazards
requires a single stall cycle for data references and has a
clock rate 1.05 times higher than the ideal machine.
Ignoring other performance losses for this machine:

Average instruction time = CPI X Clock cycle time
Average instruction time = (1 + 0.4 x 1) x Clock cycle ideal

1.05
= 1.3 X Clock cycle time ideal

CPI = 1.4

i.e. CPU without structural hazard is 1.3 times faster

(i.e loads/stores)

(In Appendix A and 350)

CMPE550 CMPE550 -- ShaabanShaaban
#14 Lec # 2 Fall 2017 9-5-2017

Data HazardsData Hazards
• Data hazards occur when the pipeline changes the order of

read/write accesses to instruction operands in such a way that
the resulting access order differs from the original sequential
instruction operand access order of the unpipelined machine
resulting in incorrect execution.

• Data hazards may require one or more instructions to be
stalled to ensure correct execution.

• Example:
DADD R1, R2, R3
DSUB R4, R1, R5
AND R6, R1, R7
OR R8,R1,R9
XOR R10, R1, R11

– All the instructions after DADD use the result of the DADD instruction
– DSUB, AND instructions need to be stalled for correct execution.

(In Appendix A and 350)

1
2
3
4
5

Arrows represent data dependencies
between instructions

Instructions that have no dependencies among
them are said to be parallel or independent

A high degree of Instruction-Level Parallelism (ILP)
is present in a given code sequence if it has a large
number of parallel instructions

i.e Correct operand data not ready yet when needed in EX cycle

CPI = 1 + stall clock cycles per instruction

Producer of
Result (data)

Consumers of
Result (data)

CMPE550 CMPE550 -- ShaabanShaaban
#15 Lec # 2 Fall 2017 9-5-2017

Figure A.6 The use of the result of the DADD instruction in the next three instructions
causes a hazard, since the register is not written until after those instructions read it.

Data Data
Hazard ExampleHazard Example

(In Appendix A)

1

2

3

4

5

Two stall cycles are needed here
(to prevent data hazard)

Pr
og

ra
m

 O
rd

er

CMPE550 CMPE550 -- ShaabanShaaban
#16 Lec # 2 Fall 2017 9-5-2017

Minimizing Data Hazard Stalls by Minimizing Data Hazard Stalls by ForwardingForwarding
• Data forwarding is a hardware-based technique (also called

register bypassing or short-circuiting) used to eliminate or
minimize data hazard stalls.

• Using forwarding hardware, the result data of an instruction is
copied directly from where it is produced (ALU, memory read
port etc.), to where subsequent instructions need it (ALU input
register, data memory write port etc.)

• For example, in the MIPS integer pipeline with forwarding:
– The ALU result from the EX/MEM register may be forwarded or fed

back to the ALU input latches as needed instead of the register
operand value read in the ID stage.

– Similarly, the Data Memory Unit result from the MEM/WB register
may be fed back to the ALU input latches as needed .

– If the forwarding hardware detects that a previous ALU operation is to
write the register corresponding to a source for the current ALU
operation, control logic selects the forwarded result as the ALU input
rather than the value read from the register file.

(In Appendix A and 350)

CMPE550 CMPE550 -- ShaabanShaaban
#17 Lec # 2 Fall 2017 9-5-2017

Forwarding Paths Added

EX MEM WBID

1

3

2

1
2
3

1
2
3

Pipeline Version 2 (in 350): With Forwarding, Branch resolved in MEM stage

CMPE550 CMPE550 -- ShaabanShaaban
#18 Lec # 2 Fall 2017 9-5-2017

PipelinePipeline
with Forwardingwith Forwarding

A set of instructions that depend on the DADD result uses forwarding paths to avoid the data hazard

(In Appendix A and 350)

Forward

Forward

1

2

3

4

5

Pr
og

ra
m

 O
rd

er

CMPE550 CMPE550 -- ShaabanShaaban
#19 Lec # 2 Fall 2017 9-5-2017

Load/Store Forwarding ExampleLoad/Store Forwarding Example

Forwarding of operand required by store during MEM

Load

Store

1

2

3

Pr
og

ra
m

 O
rd

er

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM

CMPE550 CMPE550 -- ShaabanShaaban
#20 Lec # 2 Fall 2017 9-5-2017

Data Hazard ClassificationData Hazard Classification
Given two instructions I, J, with I occurring before J
in an instruction stream (program execution order):

• RAW (read after write): A true data dependence violation

J tried to read a source before I writes to it, so J
incorrectly gets the old value.

• WAW (write after write): A name dependence violation

J tries to write an operand before it is written by I
The writes end up being performed in the wrong order.

• WAR (write after read): A name dependence violation

J tries to write to a destination before it is read by I,
so I incorrectly gets the new value.

• RAR (read after read): Not a hazard.

I
..
..

J

Program
Order

CMPE550 CMPE550 -- ShaabanShaaban
#21 Lec # 2 Fall 2017 9-5-2017

Data Hazard ClassificationData Hazard Classification
I (Write)

Shared
Operand

J (Read)

Read after Write (RAW)

I (Read)

Shared
Operand

J (Write)

Write after Read (WAR)

I (Write)

Shared
Operand

J (Write)
Write after Write (WAW)

I (Read)

Shared
Operand

J (Read)

Read after Read (RAR) not a hazard

I
..
..

J

Program
Order

e.g ADD.D F2, F1, F0

e.g ADD.D F8, F2, F9

e.g ADD.D F2, F1, F0

e.g ADD.D F1, F3, F4

e.g ADD.D F2, F1, F0

e.g ADD.D F2, F5, F7

e.g ADD.D F2, F4, F6

e.g ADD.D F8, F4, F6

Or Name

Or Name

Producer of Result

Consumer of Result

CMPE550 CMPE550 -- ShaabanShaaban
#22 Lec # 2 Fall 2017 9-5-2017

Data Hazards Present in Current MIPS PipelineData Hazards Present in Current MIPS Pipeline
• Read after Write (RAW) Hazards: Possible?

– Results from true data dependencies between instructions.
– Yes possible, when an instruction requires an operand generated by a preceding

instruction with distance less than four.
– Resolved by:

• Forwarding and/or Stalling.
• Write after Read (WAR) Hazard:

– Results when an instruction overwrites the result of an instruction before all
preceding instructions have read it.

• Write after Write (WAW) Hazard:
– Results when an instruction writes into a register or memory location before a

preceding instruction have written its result.
• Possible? Both WAR and WAW are impossible in the current pipeline.

Why?
– Pipeline processes instructions in the same sequential order as in the program.
– All instruction operand reads are completed (in ID) before a following

instruction overwrites the operand (in WB).
→ Thus WAR is impossible in current MIPS pipeline.

– All instruction result writes are done in the same program order.
→ Thus WAW is impossible in current MIPS pipeline.

MIPS in-order integer pipeline

i.e In-Order Integer Pipeline

i.e WAW impossible because
instructions reach WB stage

in program order

CMPE550 CMPE550 -- ShaabanShaaban
#23 Lec # 2 Fall 2017 9-5-2017

Data Hazards Requiring Stall CyclesData Hazards Requiring Stall Cycles
• In some code sequence cases, potential data hazards

cannot be handled by bypassing. For example:

LD R1, 0 (R2)
DSUB R4, R1, R5
AND R6, R1, R7
OR R8, R1, R9

• The LD (load double word) instruction has the data in
clock cycle 4 (MEM cycle).

• The DSUB instruction needs the data of R1 in the
beginning of that cycle.

• Hazard prevented by hardware pipeline interlock
causing a stall cycle.

(In Appendix A)

i.e. a load instruction followed
immediately with an instruction
that uses the loaded value

RAW

Even with forwarding

CMPE550 CMPE550 -- ShaabanShaaban
#24 Lec # 2 Fall 2017 9-5-2017

(In Appendix A and 350)

One stall needed

A Data Hazard Requiring A Stall:A Data Hazard Requiring A Stall:
A load instruction followed
immediately with an instruction
that uses the loaded value

1

2

3

4

Pr
og

ra
m

 O
rd

er

IF ID EX MEM WB

CMPE550 CMPE550 -- ShaabanShaaban
#25 Lec # 2 Fall 2017 9-5-2017

Hardware Pipeline InterlocksHardware Pipeline Interlocks
• A hardware pipeline interlock detects a data hazard and

stalls the pipeline until the hazard is cleared.
• The CPI for the stalled instruction increases by the

length of the stall.
• For the Previous example, (no stall cycle):

LD R1, 0(R1) IF ID EX MEM WB
DSUB R4,R1,R5 IF ID EX MEM WB
AND R6,R1,R7 IF ID EX MEM WB
OR R8, R1, R9 IF ID EX MEM WB

With Stall Cycle:

LD R1, 0(R1) IF ID EX MEM WB
DSUB R4,R1,R5 IF ID STALL EX MEM WB
AND R6,R1,R7 IF STALL ID EX MEM WB
OR R8, R1, R9 STALL IF ID EX MEM WB

(In Appendix A)

Stall + Forward

Incorrect Execution

Correct Execution

One stall

CMPE550 CMPE550 -- ShaabanShaaban
#26 Lec # 2 Fall 2017 9-5-2017

DSUB R4, R1,R5

LD R1,0(R1)

Stall

One Stall

Stall
+

Forward

A Data Hazard Requiring A Stall:A Data Hazard Requiring A Stall:
A load followed immediately by an instruction that uses the loaded value
in EX stage results in a single stall cycle even with forwarding as shown.

Stall one cycle then,
forward data of “LD”
instruction to “DSUB”
instruction

First stall one cycle then forward

Then

1

2

3

4

Pr
og

ra
m

 O
rd

er

IF ID EX MEM WB

CMPE550 CMPE550 -- ShaabanShaaban
#27 Lec # 2 Fall 2017 9-5-2017

Stall + forward

Hazard Detection Unit Operation

Stall + Forward

Forward

CMPE550 CMPE550 -- ShaabanShaaban
#28 Lec # 2 Fall 2017 9-5-2017

Static Compiler Instruction Scheduling (ReStatic Compiler Instruction Scheduling (Re--Ordering) Ordering)
for Data Hazard Stall Reductionfor Data Hazard Stall Reduction

• Many types of stalls resulting from data hazards are very
frequent. For example:

A = B + C

produces a stall when loading the second data value (B).

• Rather than allow the pipeline to stall, the compiler could
sometimes schedule the pipeline to avoid stalls.

• Compiler pipeline or instruction scheduling involves
rearranging the code sequence (instruction reordering)
to eliminate or reduce the number of stall cycles.

(In Appendix A)
Static = At compilation time by the compiler
Dynamic = At run time by hardware in the CPU

or reducei.e re-order instructions

CMPE550 CMPE550 -- ShaabanShaaban
#29 Lec # 2 Fall 2017 9-5-2017

Static Compiler Instruction Scheduling ExampleStatic Compiler Instruction Scheduling Example
• For the code sequence:

a = b + c
d = e - f

• Assuming loads have a latency of one clock cycle, the following
code or pipeline compiler schedule eliminates stalls:

a, b, c, d ,e, and f
are in memory

Scheduled code with no stalls:
LD Rb,b
LD Rc,c
LD Re,e
DADD Ra,Rb,Rc
LD Rf,f
SD Ra,a
DSUB Rd,Re,Rf
SD Rd,d

Original code with stalls:
LD Rb,b
LD Rc,c
DADD Ra,Rb,Rc
SD Ra,a
LD Re,e
LD Rf,f
DSUB Rd,Re,Rf
SD Rd,d

Stall

Stall

2 stalls for original code
No stalls for scheduled code

Re-order Instructions to eliminate stalls

Pipeline with forwarding assumed here

e.g. 0(R1)

1

2

1

2

CMPE550 CMPE550 -- ShaabanShaaban
#30 Lec # 2 Fall 2017 9-5-2017

Control HazardsControl Hazards
• When a conditional branch is executed it may change the PC and,

without any special measures, leads to stalling the pipeline for a number
of cycles until the branch condition is known (branch is resolved).
– Otherwise the PC may not be correct when needed in IF

• In current MIPS pipeline, the conditional branch is resolved in stage 4
(MEM stage) resulting in three stall cycles as shown below:

Branch instruction IF ID EX MEM WB
Branch successor stall stall stall IF ID EX MEM WB
Branch successor + 1 IF ID EX MEM WB
Branch successor + 2 IF ID EX MEM
Branch successor + 3 IF ID EX
Branch successor + 4 IF ID
Branch successor + 5 IF

Assuming we always stall or flush the pipeline on a branch instruction:
Three clock cycles are wasted for every branch for current MIPS pipeline

Branch Penalty = stage number where branch is resolved - 1
here Branch Penalty = 4 - 1 = 3 Cycles

3 stall cycles

(In Appendix A and 350)

Branch Penalty Correct PC available here
(end of MEM cycle or stage)

i.e Correct PC is not available when needed in IF

i.e version 2

CMPE550 CMPE550 -- ShaabanShaaban
#31 Lec # 2 Fall 2017 9-5-2017

Reducing Branch Stall CyclesReducing Branch Stall Cycles
Pipeline hardware measures to reduce branch stall cycles:
1- Find out whether a branch is taken earlier in the pipeline.
2- Compute the taken PC earlier in the pipeline.

In MIPS:
– In MIPS branch instructions BEQZ, BNE, test a register

for equality to zero.
– This can be completed in the ID cycle by moving the zero

test into that cycle.
– Both PCs (taken and not taken) must be computed early.
– Requires an additional adder because the current ALU is

not useable until EX cycle.
– This results in just a single cycle stall on branches.

i.e Resolve the branch in an early stage in the pipeline

As opposed branch penalty = 3 cycles before

CMPE550 CMPE550 -- ShaabanShaaban
#32 Lec # 2 Fall 2017 9-5-2017

Modified MIPS Pipeline:Modified MIPS Pipeline:
Conditional Branches Completed Conditional Branches Completed
(resolved) in ID Stage (stage2)(resolved) in ID Stage (stage2)

(In Appendix A and 350)

Branch resolved in stage 2 (ID)
Branch Penalty = 2 - 1 = 1 cycle

IF

ID

EX MEM WB

Pipeline Version 3 (in 350): With Forwarding, Branch resolved in ID stage

Stage 1

Stage 2

Stage 3 Stage 4 Stage 5

Branch Target ALU

Compare
Branch
Registers

CMPE550 CMPE550 -- ShaabanShaaban
#33 Lec # 2 Fall 2017 9-5-2017

CompileCompile--Time Reduction of Branch PenaltiesTime Reduction of Branch Penalties

• One scheme discussed earlier is to flush or freeze the pipeline by
whenever a conditional branch is decoded by holding or deleting any
instructions in the pipeline until the branch destination is known
(zero pipeline registers, control lines).

• Another method is to predict that the branch is not taken where the
state of the machine is not changed until the branch outcome is
definitely known. Execution here continues with the next
instruction; stall occurs here when the branch is taken.

• Another method is to predict that the branch is taken and begin
fetching and executing at the target; stall occurs here if the branch is
not taken. (harder to implement more on this later).

• Delayed Branch: An instruction following the branch in a branch
delay slot is executed whether the branch is taken or not (part of the
ISA).

How to handle branches in a pipelined CPU?

Most
Common

1

2

3

(or assume)

i.e always stall on a branch

Supported by all RISC ISAs

i.e PC+4

(or assume)

CMPE550 CMPE550 -- ShaabanShaaban
#34 Lec # 2 Fall 2017 9-5-2017

Predict Branch NotPredict Branch Not--Taken SchemeTaken Scheme

Pipeline stall cycles from branches = frequency of taken branches X branch penalty

Stall

Not Taken Branch (no stall)

Taken Branch (stall)

Stall when the branch is taken

(most common scheme)

Assuming the MIPS pipeline with reduced branch penalty = 1

CPI = 1 + stall clock cycles per instruction

i.e Pipeline Version 3

(or assume)

CMPE550 CMPE550 -- ShaabanShaaban
#35 Lec # 2 Fall 2017 9-5-2017

Pipeline Performance ExamplePipeline Performance Example
• Assume the following MIPS instruction mix:

• What is the resulting CPI for the pipelined MIPS with
forwarding and branch address calculation in ID stage
when using a branch not-taken scheme?

• CPI = Ideal CPI + Pipeline stall clock cycles per instruction
= 1 + stalls by loads + stalls by branches
= 1 + .3 x .25 x 1 + .2 x .45 x 1
= 1 + .075 + .09
= 1.165

Type Frequency
Arith/Logic 40%
Load 30% of which 25% are followed immediately by

an instruction using the loaded value
Store 10%
branch 20% of which 45% are taken

Branch Penalty = 1 cycle

i.e Pipeline
Version 3

1 stall

1 stall

CMPE550 CMPE550 -- ShaabanShaaban
#36 Lec # 2 Fall 2017 9-5-2017

Static Compiler Branch PredictionStatic Compiler Branch Prediction
• Static Branch prediction encoded in branch instructions using

one prediction bit = 0 = Not Taken, = 1 = Taken
– Must be supported by ISA, Ex: HP PA-RISC, PowerPC, UltraSPARC

• Two basic methods exist to statically predict branches at compile
time:

1 By examination of program behavior and the use of
information collected from earlier runs of the program.

– For example, a program profile may show that most forward
branches and backward branches (often forming loops) are
taken. The simplest scheme in this case is to just predict the
branch as taken.

2 To predict branches on the basis of branch direction,
choosing backward branches as taken and forward
branches as not taken.

Static = By the compiler Dynamic = By hardware in the CPU

XBranch Encoding X = Static Prediction bit
X= 0 Not Taken X = 1 Taken

Program profile-based static branch prediction

How?

Loop?

CMPE550 CMPE550 -- ShaabanShaaban
#37 Lec # 2 Fall 2017 9-5-2017

Profile-Based Compiler Branch
Misprediction Rates for SPEC92

Floating PointInteger

More Loops

Static Branch Prediction Performance:

Average 9%Average 15%

(FP has more loops)

CMPE550 CMPE550 -- ShaabanShaaban
#38 Lec # 2 Fall 2017 9-5-2017

ISA Reduction of Branch Penalties:ISA Reduction of Branch Penalties:
Delayed Branch (action)Delayed Branch (action)

• When delayed branch is used, the branch is delayed by n cycles,
following this execution pattern:

conditional branch instruction
sequential successor1
sequential successor2

……..
sequential successorn
branch target if taken

• The sequential successor instruction are said to be in the branch
delay slots. These instructions are executed whether or not the
branch is taken.

• In Practice, all machines that utilize delayed branching have
a single instruction delay slot. (All RISC ISAs)

• The job of the compiler is to make the successor instruction
in the delay slot a valid and useful instruction.

n branch potential action delay slots}Program
Order

These instructions in branch delay slots are
always executed regardless of branch direction

i.e. ISA Support Needed

CMPE550 CMPE550 -- ShaabanShaaban
#39 Lec # 2 Fall 2017 9-5-2017

Delayed Branch ExampleDelayed Branch Example

Single Branch Delay Slot Used
Assuming branch penalty = 1 cycle

Not Taken Branch (no stall)

Taken Branch (no stall)

All RISC ISAs

i.e. Pipeline Version # 3

CMPE550 CMPE550 -- ShaabanShaaban
#40 Lec # 2 Fall 2017 9-5-2017

Delayed BranchDelayed Branch--delay Slot Scheduling Strategiesdelay Slot Scheduling Strategies
The branch-delay slot instruction can be chosen from
three cases:

A An independent instruction from before the branch:
Always improves performance when used. The branch
must not depend on the rescheduled instruction.

B An instruction from the target of the branch:
Improves performance if the branch is taken and may require
instruction duplication. This instruction must be safe to execute if the
branch is not taken.

C An instruction from the fall through instruction stream:
Improves performance when the branch is not taken. The instruction
must be safe to execute when the branch is taken.

The performance and usability of cases B, C is improved by using
a canceling or nullifying branch.

Most Common

Hard
to
Find

e.g From Body of a loop

CMPE550 CMPE550 -- ShaabanShaaban
#41 Lec # 2 Fall 2017 9-5-2017

(A) (B) (C)

(In Appendix A)

Example:
From the
body of a loop

Most Common

CMPE550 CMPE550 -- ShaabanShaaban
#42 Lec # 2 Fall 2017 9-5-2017

BranchBranch--delay Slot: Canceling Branchesdelay Slot: Canceling Branches
• In a canceling branch, a static compiler branch direction

prediction is included with the branch-delay slot
instruction.

• When the branch goes as predicted, the instruction in the
branch delay slot is executed normally.

• When the branch does not go as predicted the instruction
is turned into a no-op (i.e. cancelled).

• Canceling branches eliminate the conditions on
instruction selection in delay instruction strategies B, C

• The effectiveness of this method depends on whether we
predict the branch correctly.

XBranch Encoding X = Static Prediction bit
X= 0 Not Taken X = 1 Taken

(AKA Canceling Delayed Branch Action Slot)

Why?

CMPE550 CMPE550 -- ShaabanShaaban
#43 Lec # 2 Fall 2017 9-5-2017

Branch Predicted Taken By Compiler

Cancelled
Stall or No-OP

Normal
No Stall

Branch Goes Not As Predicted

Branch Goes As Predicted

Canceling Branch Example – Predicted Taken

Pipeline Version # 3 Assumed Here

CMPE550 CMPE550 -- ShaabanShaaban
#44 Lec # 2 Fall 2017 9-5-2017

Performance Using Canceling Delay BranchesPerformance Using Canceling Delay Branches

70% Static Prediction Accuracy

MIPS

CMPE550 CMPE550 -- ShaabanShaaban
#45 Lec # 2 Fall 2017 9-5-2017

• Implements MIPS64 but uses an 8-stage pipeline instead of the classic 5-
stage pipeline to achieve a higher clock speed.

• Pipeline Stages:
– IF: First half of instruction fetch. Start instruction cache access.
– IS: Second half of instruction fetch. Complete instruction cache access.
– RF: Instruction decode and register fetch, hazard checking.
– EX: Execution including branch-target and condition evaluation.
– DF: Data fetch, first half of data cache access. Data available if a hit.
– DS: Second half of data fetch access. Complete data cache access. Data available if a

cache hit
– TC: Tag check, determine data cache access hit.
– WB: Write back for loads and register-register operations.

– Branch resolved in stage 4. Branch Penalty = 3 cycles if taken (2 with
branch delay slot)

The MIPS R4000 Integer PipelineThe MIPS R4000 Integer Pipeline

(In Appendix A)

1 2 3 4 5 6 7 8

Branch resolved here in stage 4 Thus branch penalty = 4-1 = 3 cycles

CMPE550 CMPE550 -- ShaabanShaaban
#46 Lec # 2 Fall 2017 9-5-2017

MIPS R4000 ExampleMIPS R4000 Example

• Even with forwarding the deeper pipeline leads to
a 2-cycle load delay (2 stall cycles).

(In Appendix A)

LW data available here

Forwarding of LW Data

As opposed to 1-cycle in classic 5-stage pipeline

Deeper Pipelines = More Stall Cycles and Higher CPI
Pr

og
ra

m
 O

rd
er

T = I x CPI x C

CMPE550 CMPE550 -- ShaabanShaaban
#47 Lec # 2 Fall 2017 9-5-2017

Pipelining and Handling of ExceptionsPipelining and Handling of Exceptions
• Exceptions are events that usually occur in normal program execution

where the normal execution order of the instructions is changed (often
called: interrupts, faults).

• Types of exceptions include:

• I/O device request
• Invoking an operating system service
• Tracing instruction execution
• Breakpoint (programmer-requested interrupt).
• Integer overflow or underflow
• FP anomaly
• Page fault (not in main memory)
• Misaligned memory access
• Memory protection violation
• Undefined instruction
• Hardware malfunctions

CMPE550 CMPE550 -- ShaabanShaaban
#48 Lec # 2 Fall 2017 9-5-2017

Characteristics of ExceptionsCharacteristics of Exceptions
• Synchronous vs. asynchronous:

Synchronous: occurs at the same place with the same data and memory allocation
Asynchronous: Caused by devices external to the processor and memory.

• User requested vs. coerced:
User requested: The user task requests the event.
Coerced: Caused by some hardware event.

• User maskable vs. user nonmaskable:
User maskable: Can be disabled by the user task using a mask.

• Within vs. between instructions:
Whether it prevents instruction completion by happening in the middle of execution.

• Resuming vs. terminating:
Terminating: The program execution always stops after the event.
Resuming: the program continues after the event. The state of the pipeline must be
saved to handle this type of exception. The pipeline is restartable in this case.

CMPE550 CMPE550 -- ShaabanShaaban
#49 Lec # 2 Fall 2017 9-5-2017

Handling of Resuming ExceptionsHandling of Resuming Exceptions
• A resuming exception (e.g. a virtual memory page fault) usually

requires the intervention of the operating system.

• The pipeline must be safely shut down and its state saved for
the execution to resume after the exception is handled as
follows:

1 Force a trap instruction into the pipeline on the next IF.

2 Turn of all writes for the faulting instruction and all
instructions in the pipeline. Place zeroes into pipeline latches
starting with the instruction that caused the fault to prevent
state changes.

3 The exception handling routine of the operating system
saves the PC of the faulting instruction and other state data
to be used to return from the exception.

(following)

To handle the exception

i.e save program state

is invoked

CMPE550 CMPE550 -- ShaabanShaaban
#50 Lec # 2 Fall 2017 9-5-2017

Precise Exception HandlingPrecise Exception Handling
• When using delayed branches, as many PCs as the the

length of the branch delay plus one need to be saved and
restored to restore the state of the machine.

• After the exception has been handled special instructions
are needed to return the machine to the state before the
exception occurred (RFE, Return to User code in MIPS).

• Precise exceptions and handling imply that a pipeline is
stopped so the instructions just before the faulting
instruction are completed and and those after it can be
restarted from scratch.

• Machines with arithmetic trap handlers and demand
paging must support precise exceptions.

After handling the exception (i.e. As if processor is not pipelined)

i.e Precise exception handling imply handling exceptions
as if the processor is not pipelines

Exception Handling Issues:Exception Handling Issues:

CMPE550 CMPE550 -- ShaabanShaaban
#51 Lec # 2 Fall 2017 9-5-2017

Exceptions in MIPS Integer PipelineExceptions in MIPS Integer Pipeline
• The following represent problem exceptions for the MIPS

5 pipeline stages:
IF Page fault on instruction fetch; misaligned memory access;

memory-protection violation.
ID Undefined or illegal opcode
EX Arithmetic exception
MEM Page fault on data fetch; misaligned memory access;

memory-protection violation
WB None

• Example: LD IF ID EX MEM WB
DADD IF ID EX MEM WB

can cause a data page fault and an arithmetic exception at the same
time (LD in MEM and DADD in EX)
Handled by dealing with data page fault and then restarting execution,
then the second exception will occur but not the first.

i.e handle exceptions in program order one at a time
(as if processor is not pipelined)

Pr
og

ra
m

 O
rd

er

CMPE550 CMPE550 -- ShaabanShaaban
#52 Lec # 2 Fall 2017 9-5-2017

Precise Exception Handling in MIPSPrecise Exception Handling in MIPS
(i.e MIPS Integer Single(i.e MIPS Integer Single--Issue InIssue In--Order Pipeline)Order Pipeline)

• The instruction pipeline is required to handle exceptions of
instruction i before those of instruction i+1

• The hardware posts all exceptions caused by an instruction in a
status vector associated with the instruction which is carried
along with the instruction as it goes through the pipeline.

• Once an exception indication is set in the vector, any control
signals that cause a data value write is turned off.

• When an instruction enters WB the vector is checked, if any
exceptions are posted, they are handled in the order they would
be handled in an unpipelined machine.

• Any action taken in earlier pipeline stages is invalid but cannot
change the state of the machine since writes where disabled.

For the following instructions

i.e in program order

1

2

3

i.e in program orderHow?

i.e by later instructions in program order

CMPE550 CMPE550 -- ShaabanShaaban
#53 Lec # 2 Fall 2017 9-5-2017

Floating Point/Multicycle Pipelining in MIPSFloating Point/Multicycle Pipelining in MIPS
• Completion of MIPS EX stage floating point arithmetic operations in one

or two cycles is impractical since it requires:
• A much longer CPU clock cycle, and/or
• An enormous amount of logic.

• Instead, the floating-point pipeline will allow for a longer latency (more
EX cycles than 1).

• Floating-point operations have the same pipeline stages as the integer
instructions with the following differences:

– The EX cycle may be repeated as many times as needed (more than 1 cycle).

– There may be multiple floating-point functional units.
– A stall will occur if the instruction to be issued either causes a structural

hazard for the functional unit or cause a data hazard.

• The latency of functional units is defined as the number of intervening
cycles between an instruction producing the result and the instruction
that uses the result (usually equals stall cycles with forwarding used).

• The initiation or repeat interval is the number of cycles that must elapse
between issuing an instruction of a given type.

(In Appendix A)

Solution:

to the same functional unit

(Stall?)

CMPE550 CMPE550 -- ShaabanShaaban
#54 Lec # 2 Fall 2017 9-5-2017

Extending The MIPS PipelineExtending The MIPS Pipeline
to Handle Floatingto Handle Floating--Point Point
Operations:Operations:

Adding NonAdding Non--PipelinedPipelined
Floating Point UnitsFloating Point Units

(In Appendix A)

The MIPS pipeline with three additional unpipelined, floating-point functional units
(FP FUs)

CMPE550 CMPE550 -- ShaabanShaaban
#55 Lec # 2 Fall 2017 9-5-2017

Extending The MIPS Pipeline:Extending The MIPS Pipeline:
Multiple Outstanding Floating Point OperationsMultiple Outstanding Floating Point Operations

Latency = 0
Initiation Interval = 1

Latency = 3
Initiation Interval = 1
Pipelined

Latency = 6
Initiation Interval = 1
Pipelined

Latency = 24
Initiation Interval = 25
Non-pipelined

Integer Unit

Floating Point (FP)/Integer Multiply

FP/Integer Divider

IF ID WBMEM
FP Adder

EX

Hazards:
RAW, WAW possible
WAR Not Possible
Structural: Possible
Control: Possible

(In Appendix A)

In-Order Single-Issue MIPS Pipeline with FP Support
Pipelined CPU with pipelined FP units = Super-pipelined CPU

Super-pipelined CPU:
A pipelined CPU with
pipelined FP units

In-Order = Start of instruction execution
done in program order

CMPE550 CMPE550 -- ShaabanShaaban
#56 Lec # 2 Fall 2017 9-5-2017

Latencies and Initiation Intervals For Latencies and Initiation Intervals For
Functional Units (FUs)Functional Units (FUs)

Functional Unit Latency Initiation Interval

Integer ALU 0 1

Data Memory 1 1
(Integer and FP Loads)

FP add 3 1

FP multiply 6 1
(also integer multiply)

FP divide 24 25
(also integer divide)

Latency usually equals stall cycles when full forwarding is used

(In Appendix A)

Shown in last slide

Not Pipelined

CMPE550 CMPE550 -- ShaabanShaaban
#57 Lec # 2 Fall 2017 9-5-2017

Pipeline Characteristics With FP SupportPipeline Characteristics With FP Support
• Instructions are still processed in-order in IF, ID, EX at the

rate of one instruction per cycle.
• Longer RAW hazard stalls likely due to long FP latencies.
• Structural hazards possible due to varying instruction times

and FP latencies:
– FP unit may not be available (not pipelined?) ; divide in this

case.
– MEM, WB reached by several instructions simultaneously.

• WAW hazards can occur since it is possible for instructions
to reach WB out-of-order.

• WAR hazards impossible, since register reads occur in-
order in ID.

• Instructions can be allowed to complete out-of-order
requiring special measures to enforce precise exceptions.

(In Appendix A)

Provided no WAW hazard resultsi.e Before a following instruction
overwrites value

Order = Program order

CMPE550 CMPE550 -- ShaabanShaaban
#58 Lec # 2 Fall 2017 9-5-2017

FP Operations Pipeline Timing ExampleFP Operations Pipeline Timing Example

IF ID A1 A4A3A2 MEM WB

IF ID M1 M6 M7M2 M3 M4 M5 MEM WB

IF ID MEMEX WB

IF ID MEMEX WB

MUL.D

L.D

ADD.D

S.D

CC 1 CC 2 CC 3 CC 8 CC 9CC 4 CC 5 CC 6 CC 7 CC 10 CC 11

(In Appendix A)

When run on In-Order Single-Issue MIPS Pipeline with FP Support
With FU latencies/initiation intervals given in slides 54-55

Example illustrating
that instructions can
reach WB stage and
Complete Out of order
(i.e out of program order).
Thus Write-After-Write
(WAW) hazards can
occur in this pipeline

All above instructions are assumed independent

Pr
og

ra
m

 O
rd

er

Potential WAW Hazard Example

FP Multiply = 7 EX cycles FP ADD = 4 EX Cycles

CMPE550 CMPE550 -- ShaabanShaaban
#59 Lec # 2 Fall 2017 9-5-2017

FP Code RAW Hazard Stalls ExampleFP Code RAW Hazard Stalls Example
(with full data forwarding in place)(with full data forwarding in place)

IF MEMID EX WB

IF ID M1 M6 M7M2 M3 M4 M5 MEM WB

IF ID A1 A4A3A2 MEM WB

CC 1 CC 2 CC 3 CC 8 CC 9CC 4 CC 5 CC 6 CC 7 CC 10 CC 11 CC12 CC13 CC14 CC15 CC16 CC17 CC18

IF ID MEMEX WB

STALL

STALL STALL STALL STALLSTALL STALL STALL

STALL STALLSTALL STALL STALL STALL STALL STALL STALL

L.D F4, 0(R2)

MUL.D F0, F4, F6

ADD.D F2, F0, F8

S.D F2, 0(R2)

Third stall due
to structural hazard
in MEM stage

6 stall cycles which equals latency of FP multiply functional unit

(In Appendix A)

When run on In-Order Single-Issue MIPS Pipeline with FP Support
With FP latencies/initiation intervals given in slides 54-55

Pr
og

ra
m

 O
rd

er

As indicated in slides 54-55: FP Multiply Functional Unit has 7 EX cycles (and 6 cycle latency 6 = 7-1)
FP Add Functional Unit has 4 EX cycles (and 3 cycle latency 3 = 4-1)

CMPE550 CMPE550 -- ShaabanShaaban
#60 Lec # 2 Fall 2017 9-5-2017

FP Code Structural Hazards ExampleFP Code Structural Hazards Example

IF ID A1 A4A3A2 MEM WB

IF ID M1 M6 M7M2 M3 M4 M5 MEM WB

IF ID MEMEX WB

IF ID MEMEX WB

MULTD F0, F4, F6

LD F2, 0(R2)

ADDD F2, F4, F6

CC 1 CC 2 CC 3 CC 8 CC 9CC 4 CC 5 CC 6 CC 7 CC 10 CC 11

IF ID MEMEX WB

IF ID MEMEX WB

IF ID MEMEX WB

. . . (integer)

. . . (integer)

. . . (integer)

. . . (integer)

When run on In-Order Single-Issue MIPS Pipeline with FP Support
With FP latencies/initiation intervals given in slides 54-55

Pr
og

ra
m

 O
rd

er

CMPE550 CMPE550 -- ShaabanShaaban
#61 Lec # 2 Fall 2017 9-5-2017

Maintaining Maintaining Precise ExceptionsPrecise Exceptions in Multicycle Pipeliningin Multicycle Pipelining
• In the MIPS code segment: DIV.D F0, F2, F4

ADD.D F10, F10, F8
SUB.D F12, F12, F14

• The ADD.D, SUB.D instructions can complete before DIV.D is completed
causing out-of-order execution completion.

• If DIV.D causes a floating-point arithmetic exception, precise exception
handling is harder since both ADD.D, SUB.D have already completed.

• Four approaches have been proposed to remedy this type of situation:
1 Ignore the problem and settle for imprecise exception.
2 Buffer the results of the operation until all the operations issues

earlier are done. (large buffers, multiplexers, comparators)
3 A history file keeps track of the original values of registers

(CYBER180/190, VAX)
4 A Future file keeps the newer value of a register; when all earlier

instructions have completed the main register file is updated from the
future file. On an exception the main register file has the precise
values for the interrupted state.

(In Appendix A)

e.g Stall WB

Exception Generated

Already Done

Used to restore original register values if needed

i.e Force in-order com
pletion

i.e. with FP support

