e Instruction Pipelining Review:

— MIPS In-Order Single-Issue Integer Pipeline | Pipelined MIPS CPU Design from 350

] ;] C . Org.
— Performance of Pipelines with Stalls (Come. O19)
— Pipeline Hazards
 Structural hazards

« Data hazards
— Minimizing Data hazard Stalls by Forwarding
— Data Hazard Classification
— Data Hazards Present in Current MIPS Pipeline

« Control hazards
— Reducing Branch Stall Cycles
— Static Compiler Branch Prediction
— Delayed Branch Slot
« Canceling Delayed Branch Slot

e Pipelining and Handling of Exceptions
— Precise exception Handling

o Extending The MIPS Pipeline to Handle Floating-Point Operations
— Pipeline Characteristics With FP Support
— Maintaining Precise Exceptions in FP/Multicycle Pipelining

(In Appendix A) ICl\/”:)E\IZ_)E)O - Shaaban

#1 Lec#2 Fall 2017 9-5-2017

Instruction Pipelining Review

* Instruction pipelining is CPU implementation technique where multiple
operations on a number of instructions are overlapped.

— Instruction pipelining exploits Instruction-Level Parallelism (1LP)

* An instruction execution pipeline involves a number of steps, where each step
completes a part of an instruction. Each step is called a pipeline stage or a pipeline
segment.

« The stages or steps are connected in a linear fashion: one stage to the next to
form the pipeline -- instructions enter at one end and progress through the stages
and exit at the other end. 1 2} 3} 4} 5 >

* The time to move an instruction one step down the pipeline is is equal to the
machine cycle and is determined by the stage with the longest processing delay.
* Pipelining increases the CPU instruction throughput: The number of instructions
completed per cycle.
— Under ideal conditions (no stall cycles), instruction throughput is one

instruction per machine cycle, or|ideal CPI =1|OrIPC=1 T=1 x CPI

xC

* Pipelining does not reduce the execution time of an individual instruction: The
time needed to complete all processing steps of an instruction (also called
Instruction Completlon Iatencv). Pipelining may actually increase individual instruction latency

— Minimum instruction latency = ncycles, where n is the number of pipeline
stages

-) :) — (In Appendix A and 350)
The pipeline described here is called an in-order pipeline because

instructions are processed or executed in the original program order M P E h
- n
C 550 - Shaaba

Order = Program order

#2 Lec#2 Fall 2017 9-5-2017

Generic CPU Machine Instruction Processing Steps

v (Implied by The Von Neumann Computer Model)
Instruction . :
PC Fetch Obtain instruction from program storage
ic The Program Counter (PC) points to next instruction to be processed
Instruction
Determine required actions and instruction size
Decode
Operand .
P Locate and obtain operand data
Fetch
Execute Compute result value or status
Result . .
Deposit results in storage for later use
Store
Next : : :
pdate PC > _ Determine successor or next instruction
Instruction (i.e Update PC)
|

| | Major CPU Performance Limitation: The Von Neumann computing model MPE _ h n _I_
C 550 - Shaaba

implies sequential execution one instruction at a time

#3 Lec#2 Fall 2017 9-5-2017

I.e execution in program order

Ideal Operation

Fill Cycles = number of stages -1

Clock Number

% Instruction Number 1 2 3 4 5 6
@)
i 1 Instruction I IF ID EX MEM WB
E 2 Instruction 1+1 IF ID EX MEM WB
3 Instruction 1+2 IF ID EX MEM
l 4 Instruction I1+3 IF ID EX
5 Instruction | +4 IF ID
4cycles=n-1=5-1

Time to fill the pipeline =9
MIPS Pipeline Stages:

IF = Instruction Fetch i] :
. First instruction, |
ID = Instruction Decode
_ Completed
EX = Execution
MEM = Memory Access n=>5 plpellne Stages
WB = Write Back

(Classic 5-Stage)

MIPS In-Order Single-1ssue Integer Pipeline

(No stall cycles)

Time in clock cycles —

7 8 9
WB

MEM WB
EX MEM WB

Last instruction,
I1+4 completed

Ideal CPI =1

(or IPC =1)

In-order = instructions executed in original program order

Ideal pipeline operation without any stall cycles

(In Appendix A)

ICI\/IPE55O - Shaaban

#4 Lec#2 Fall 2017 9-5-2017

A Pipelined MIPS Integer Datapath

Pipeline Version 1 (in 350): No Forwarding, Branch resolved in MEM stage
« Assume register writes occur in first half of cycle and reqister reads occur in second half.

Classic Five Stage
Integer Single-Issue
In-Order Pipeline

for MIPS

Branches resolved
Here in MEM (Stage 4)

MEMWE

IF
Stage 1
IF/1D ID IDVEX EX e /
4 ” Stage 2 Stage 3
u Branch
i P P laken MEM
II==[-i A0
- Stage 4
®11.15 u -
Instructan| 1B - . ;
mamary - MEMWE R |TEgistErs iy >au; | 4
' Crata
- TSy

WB
Stage 5

The datapath is pipelined by adding a set of registers, one between each pair of pipe stages.
Taken Branch Penalty = 4 -1 = 3 cycles

(In Appendix A and 350)

CMPES550 - Shaaban]—

#5 Lec#2 Fall 2017 9-5-2017

Time {in clock cyclas) i

CC 1 i oo & CC & oo 7 oC 4 CC o
g IFd E EE';I
g i
B E
£ ;
= :
s T Write destination register

. Bl
I Pt Reg) ? AT oMo [| Fes ! in first half of WB cycle

IF : ID : EX { MEM | WB

Prodgram éxaculon o

IF ID
Read operand registers M Aag
in second half of ID cycle [
IF WB

Operation of ideal integer in-order 5-stage pipeline

oM [Reg |

MEM i WB
The pipeline can be thought of as a series of datapaths shifted in time.

CMPES550 - Shaaban]—

(In Appendix A and 350)
#6 Lec#2 Fall 2017 9-5-2017

Pipelining Performance Example

 Example: For an unpipelined CPU:

— Clock cycle = 1ns, 4 cycles for ALU operations and branches
and 5 cycles for memory operations with instruction frequencies
of 40%, 20% and 40%, respectively.

— If pipelining adds 0.2 ns to the machine clock cycle then the
speedup in instruction execution from pipelining is:

Non-pipelined Average instruction execution time = Clock cycle x Average CPI

=1nsx((40% + 20%) x4 + 40%x5)=1nsx4.4=4.4ns

CPI =44

In the pipelined implementation five stages are used with an

CPI

average instruction execution time of: 1 ns+0.2ns=1.2 ns
Speedup from pipelining = Instruction time unpipelined
Instruction time pipelined
= 44ns/1.2ns =3.7 times faster

T=1xCPIxC here I did not change CMPEbSA0 - Shaaban]—

#7 Lec#2 Fall 2017 9-5-2017

Pipeline Hazards

e Hazards are situations in pipelining which may prevent the
next instruction in the instruction stream from executing
during the designated clock cycle possibly resulting in one or
more stall (or wait) cycles. e A resource the instruction requires for correct

execution is not available in the cycle needed

 Hazards reduce the ideal speedup (increase CPI > 1) gained

from pipelining and are classified into three classes:
waaioe: | — Structural hazards: Arise from hardware resource conflicts

o when the available hardware cannot support all possible
araware . . - .
component | COMBbBINations of instructions. | Hardware structure (component) conflict

— Data hazards: Arise when an instruction depends on the

Correct result of a previous instruction in a way that is exposed bv the
eran . . - - - -
wa)value | OVErlapping of instructions in the pipeline | Operand not ready yet

when needed in EX or ID

— Control hazards: Arise from the pipelining of conditional

Correct branches and other instructions that change the PC

Correct PC not available when needed in IF

CMPES550 - Shaaban]—

#8 Lec#2 Fall 2017 9-5-2017

(In Appendix A and 350)

Performance of Pipelines with Stalls

Hazard conditions in pipelines may make it necessary to stall the

pipeline by a number of cycles degrading performance from
the ideal pipelined CPU CPI of 1.

Average
//
CPI pipelined = lIdeal CPI + Pipeline stall clock cycles per instruction
= 1 + Pipeline stall clock cycles per instruction

If pipelining overhead is ignored and we assume that the stages are
perfectly balanced then speedup from pipelining is given by:

Speedup = CPI unpipelined / CPI pipelined

CPI unpipelined / (1 + Pipeline stall cycles per instruction)

When all instructions in the multicycle CPU take the same number of
cycles equal to the number of pipeline stages then:

Speedup = Pipeline depth /(1 + Pipeline stall cycles per instruction)

T=1x CPlI xC

(In Appendix A and 350)

ipc= Pt [CMPESS0 - Shaaban]—

#9 Lec#2 Fall 2017 9-5-2017

Structural (or Hardware) Hazards

* In pipelined machines overlapped instruction execution
requires pipelining of functional units and duplication of
resources to allow all possible combinations of instructions

In the plpelme' May need stall cycles to prevent hardware structures conflicts

e |If a hardware resource conflict arises due to a hardware
resource being required by more than one instruction in a
single cycle, and one or more such instructions cannot be
accommodated, then a structural hazard has occurred,

for example:

es. | — When a pipelined machine (CPU) has a shared single-

memory pipeline stage for data and instructions.
— stall the pipeline for one cycle for memory gata access

i.e A hardware component the instruction requires for correct l.e. Load/Store Instructions

execution is not available in the cycle needed

ICI\/IPE55O - Shaaban

(In Appendix A and 350)
#10 Lec#2 Fall 2017 9-5-2017

Load
/
7

Or store

) Imatruction 1
€

@

2

T

Instruction 2

Ingtruction 3

Insstruction 4

Tirme {in clock cycles)

cC1 coz cC 3 CC4
F ¢ ID < . MEM
P ern _'J: Reg ﬁ ,-" bem :
F i ID | EX
Marm _'J:: Fag

CCa

cor

¥

cCa

One shared memory for
instructions and data

IF ID
ham |
IF

Mem

MIPS with Memory

Unit Structural Hazards

Mam

IF

ID

Mem .

MEM

A machine with only one memory port will generate a conflict whenever a miernnr,r reference occurs.

(In Appendix A and 350)

CMPES550 - Shaaban]—

#11 Lec#2 Fall 2017 9-5-2017

CPI1 =1 + stall clock cycles per instruction = 1 + fraction of loads and stores x 1

Tirme (in clock cycles)

L)

cct i eccz | ccs i cc4 | ces | coe | cC7 i cos

IFEIDE%EMEMEWB
Al = S N

L/-::-ad Mem it Reg | |):; A Mem [T e b One shared memory for

Or store instructions and data

Program Order

Inatruction 1 hd=m i 1 Feg }J .r' kl=m ,f Heg

| : I \
Instruction 2 Mem : : '

P : AT Mem ,-"‘ Heg

Stall or wait

Stall / Bubble [Bubble . if Bubble) [Bubble i [Bubble
Cycle s s s

' i D |

IF

i : , , EX é MEM
Resolving A Structural ey
T Hazard with Stalling e R)]

The structural hazard causes pipeline bubbles to be inserted.

]

3
|£
N\

Instructions 1-3 above are assumed to be instructions other than loads/stores M P E _ h n _I_
.C 550 - Shaaba

(In Appendix A and 350)

#12 Lec#2 Fall 2017 9-5-2017

A Structural Hazard Example

(i.e loads/stores)

« Given that data references are 40% for a specific
Instruction mix or program, and that the ideal pipelined
CPI ignoring hazards is equal to 1.

* A machine with a data memory access structural hazards
requires a single stall cycle for data references and has a
clock rate 1.05 times higher than the ideal machine.
Ignoring other performance losses for this machine:

Average instruction time = CPI X Clock cycle time
Average instruction time = (1+ 0.4 x1) x Clock cycle iy
CPI=14 1.05
= 1.3 X Clock cycle time ;4.

i.e. CPU without structural hazard is 1.3 times faster

CMPES550 - Shaaban]—

#13 Lec#2 Fall 2017 9-5-2017

(In Appendix A and 350)

Data Hazards

« Data hazards occur when the pipeline changes the order of
read/write accesses to instruction operands in such a way that
the resulting access order differs from the original sequential
Instruction operand access order of the unpipelined machine
resulting in incorrect execution.

« Data hazards may require one or more instructions to be
stalled to ensure correct execution.

. CPI =1 + stall clock cycles per instruction
e Example: ep
Producer of .
+— DADD R1 R2.RS3 Arrows represent data dependencies
Result (data) 1 ’ ’ between instructions

Instructions that have no dependencies among

Consumers of 3 them are said to be parallel or independent
u 1%

A high degree of Instruction-Level Parallelism (ILP)

Result (data) 4
IS present in a given code sequence if it has a large

L 5 XOR RI10, R1, R11 number of parallel instructions

— All the instructions after DADD use the result of the DADD instruction
— DSUB, AND instructions need to be stalled for correct execution.

I.e Correct operand data not ready yet when needed in EX cycle CMPES550 - Shaaban ‘l_

(In Appendix A and 350) #14 Lec#2 Fall 2017 952017

Program Order

[

Program execution order (in instructions)

DADD R1, R2, R3

DSUB R4, R1, R5

AND R6, R1, R7

OR R8, R1, R9

XOR R10, R1, R11

Time (in clock cycles)

CC1

cC2

CC3

ALU

CC4

Data
Hazard Example

CC5 cCé
Reg
DM [| Reg

DM

oy

(o)
Q
ALU

Figure A.6 The use of the result of the DADD instruction in the next three instructions
causes a hazard, since the register is not written until after those instructions read it.

(In Appendix A)

Two stall cycles are needed here
(to prevent data hazard)

CMPES550 - Shaaban]—

#15 Lec#2 Fall 2017 9-5-2017

Minimizing Data Hazard Stalls by Forwarding

« Data forwarding is a hardware-based technigue (also called
register bypassing or short-circuiting) used to eliminate or
minimize data hazard stalls.

« Using forwarding hardware, the result data of an instruction is
copied directly from where it is produced (ALU, memory read
port etc.), to where subsequent instructions need it (ALU input
register, data memory write port etc.)

o For example, in the MIPS integer pipeline with forwarding:

— The ALU result from the EX/MEM register may be forwarded or fed
back to the ALU input latches as needed instead of the register
operand value read in the 1D stage.

— Similarly, the Data Memory Unit result from the MEM/WB register
may be fed back to the ALU input latches as needed .

— If the forwarding hardware detects that a previous ALU operation is to
write the register corresponding to a source for the current ALU
operation, control logic selects the forwarded result as the ALU input
rather than the value read from the register file.

CMPES550 - Shaaban]—

(In Appendix A and 350)
#16 Lec#2 Fall 2017 9-5-2017

IDVEX EXEM MEMANE

ID

EX . | MEM i we

Zerm? ———-

Ciata P
Moy o S

Forwarding Paths Added :"i'.'.'.E;Z'.'.Z'.'.'.'.'.'.'.'.'.Z'.'.'.'.'.'.'.'.'.Z'.'.'.'.'.'.'.'.'.Z'.:..E

inputs on each ALU multiplexer and the addition of three paths to the new inputs.

Forwarding of results to the ALU requires the addition of three extra

Pipeline Version 2 (in 350): With Forwarding, Branch resolved in MEM stage

CMPES550 - Shaaban]—

#17 Lec#2 Fall 2017 9-5-2017

Program Order

Time (in clock cycles) >

cC 1 cc2 cc3 cc4 ccs cce
[=
1 — DADD R1, R2, R3 M - Reg = d DM [} Reg
5 | L
< E— :
> — — ;
z] 1% Forward]
E
5 C .
2 ¢ DSUBR4R1 RS IM . Reg Reg
= Soaiine IR e
S L
= L L L
[&]
[} — _ —
>
[}]
£
o
3 & ANDR6, R1,R7 M DM [
o 4|_
i .
4 OR R8, R1, R9 IM : Reg <
5 | XORRI0,R1,RI1 p
with Forwarding .

A set of instructions that depend on the DADD result uses forwarding paths to avoid the data hazard

ICI\/IPE55O - Shaaban

(In Appendix A and 350)

#18 Lec#2 Fall 2017 9-5-2017

Program Order

Program execution order (in instructions)

_oad/Store Forwarding Example

Time (in clock cycles)

DADD R1, R2, R3

LD R4, O(R1)

SD R4,12(R1)

CC 1
IF

M

Load

Forwarding of operand required by store during MEM

CC5

CcC3 CC4
EX '] MEM
é DM
=TT

Store

ALU

CC6

CMPES550 - Shaaban]—

#19 Lec#2 Fall 2017 9-5-2017

Data Hazard Classification

Given two instructions I, J, with | occurring before J

In an instruction stream (program execution order):

RAW (read after write): A true data dependence violation

J tried to read a source before | writes to it, so J
Incorrectly gets the old value.

WAW (write after write): A name dependence violation
J tries to write an operand before it is written by |

J v

Program
Order

The writes end up being performed in the wrong order.

WAR (write after read): A name dependence violation

J tries to write to a destination before it is read by I,
so | incorrectly gets the new value.

RAR (read after read): Not a hazard.

ICI\/IPE55O - Shaaban

#20 Lec#2 Fall 2017 9-5-2017

PrO\ducer of Result Data Hazard C|aSSIfIC8.tI0n
" | (Write) | (Read)
e.g ADD.D F2, F1, FO\ \
| Shared e.g ADD.D F2, F1, FO
) . - Shared
y \e.g ADD.D F8, F2, F9 Operand e.g ADD.D FL, F3, F4 Operan\d
X
J v J (Read) / J (erte) Or Name
| (Write) | (Read)
\ e.g ADD.D F2, F4, FG\
e.g ADD.D F2, F1, FO
Shared Shared
e.g ADD.D F2, F5, F7 Operar]d eg ADDD F8, F4,F6 Operand

JWrite)— o | 3 (Read)h—

Write after Write (WAW) Read after Read (RAR) not a hazard
CMPES550 - Shaaban|-

#21 Lec#2 Fall 2017 9-5-2017

Data Hazards Present in Current MIPS Pipeline

Read after Write (RAW) Hazards: Possible?

T~

I.e In-Order Integer Pipeline

— Results from true data dependencies between instructions.

— Yes possible, when an instruction requires an operand generated by a preceding

instruction with distance less than four.
— Resolved by:
 Forwarding and/or Stalling.

Write after Read (WAR) Hazard:

— Results when an instruction overwrites the result of an instruction before all

preceding instructions have read it.
Write after Write (WAW) Hazard:

— Results when an instruction writes into a register or memory location before a

preceding instruction have written its resulit.

Possible? Both WAR and WAW are impossible in the current pipeline.

MIPS in-order integer pipeline

Why?

— Pipeline processes instructions in the same sequential order as in the program.
— All instruction operand reads are completed (in ID) before a following

instruction overwrites the operand (in WB).

— Thus WAR is impossible in current MIPS pipeline.

— All instruction result writes are done in the same

program order.

— Thus WAW is impossible in current MIPS pipeline. —

i.e WAW impossible because
instructions reach WB stage
in program order

ICI\/IPE55O - Shaaban]J

#22 Lec#2 Fall 2017 9-5-2017

RAW

Data Hazards Requiring Stall Cycles

Even with forwarding

* In some code sequence cases, potential data hazards
cannot be handled by bypassing. For example:

LD Rl’ 0 (RZ) — i.e. aload instruction followed

DSUB R4, R1, R5 - immediately with an instruction
that uses the loaded value

AND Ro6\ R1, R7Y

OR RS, R1, R9

 The LD (load double word) instruction has the data in
clock cycle 4 (MEM cycle).

e The DSUB instruction needs the data of R1 In the
beginning of that cycle.

 Hazard prevented by hardware pipeline interlock
causing a stall cycle.

ICI\/IPE55O - Shaaban

(In Appendix A)

#23 Lec#2 Fall 2017 9-5-2017

Program Order

Program execution order (in instructions)

LD R1,0(R2)

DSUB R4, R1, R5

AND Ré6, R1, R7

OR R8, R1, R9

Time (in clock cycles)

CC 1
IF

IM

One stall needed

CC3

EX

ALU

CC4 o CC5
MEM WB
DM Reg

A Data Hazard Requiring A Stall:

A load instruction followed
immediately with an instruction
that uses the loaded value

The load instruction can bypass its results to the AND and OR instructions, but not to the suB, since

(In Appendix A and 350)

that would mean forwarding the result in “negative time."

ICI\/IPE550 - Shaaban

#24 Lec#2 Fall 2017 9-5-2017

Hardware Pipeline Interlocks

* A hardware pipeline interlock detects a data hazard and
stalls the pipeline until the hazard is cleared.

 The CPI for the stalled instruction increases by the
length of the stall.

* For the Previous example, (no stall cycle):

LD R1, O(R1) IF ID
DSUB R4,R1,R5 IF
AND R6,R1,R7
OR R8, R1, R9

With Stall Cycle:

LD R1, O(R1) IF ID
DSUB R4,R1,R5 IF
AND R6,R1,R7
OR R8, R1, R9

EX
ID
IF

EX
ID
IF

One stall

MEM
EX
1D
IF

WB

MEM
EX
1D

Stall + Forward

MEM

STALL
STALL
STALL

WB

EX
ID
IF

Incorrect Execution

WB

MEM WB

EX MEM WB
Correct Execution

MEM WB

EX MEM WB

ID EX MEM WB

(In Appendix A)

CMPES550 - Shaaban]—

#25 Lec#2 Fall 2017 9-5-2017

Program Order

FProgram exaculion order {in instructions)

LD R1,0(R1)

Stall

DSUB R4, R1,R5 in Reg Bubble

AND Re, R1, RY

COH B8, H1, RS

Timea (in clock oycles)

CoA oG 2 CCa3 Co 4

IF ID EX MEM
| s

Ind ' Reg /&'

Stall
Thenl +

Forward M ‘@’

First stall one cycle then forward

One Stall

CCa CCa

WB Stall one cycle then,

% | forward data of “LD”
instruction to “DSUB”
instruction

; O
& -
Fiag Z
i i Reg

The load interlock causes a stall to be inserted at clock cycle 4, delaying the sUB instruction and those
that follow by one cycle.

A Data Hazard Requiring A Stall:

A load followed immediately by an instruction that uses the loaded value
in EX stage results in a single stall cycle even with forwarding as shown.

CMPES550 - Shaaban]—

#26 Lec#2 Fall 2017 9-5-2017

Situation Example code
sequence

Action

No dependence Lw R1,45(R2)
ADD R5,R6,RY7
SUE RE,R6,R7
OR RY9Y,R6,R7

No hazard possible because no dependence
exists on R1 in the immediately following
three instructions.

Dependence Lw R1,45(R2)
requiring stall ADD R%,R1,R7
SUB R8,R6,R7
OR R9,R6,R7Y

Stall + forward

Comparators detect the use of R1 in the ADD
and stall the 20D (and SUE and OR) before the

ADD begins EX.

Stall + Forward

Dependence LW Rl,45(E2)
overcome by ADD RSy R6,R7
forwarding SUEB R&8,R1,E7

OF R3,R&,R7Y

Comparators detect use of R1 in SUE and for-
ward result of load to ALU in time for SUB 10

begin EX.

Forward

Dependence Lw R1,45(R2)
with accesses in ADD R5,R6,R7
order SUE RY,R6,R7

OR R9,R1,R7

No action required because the read of R1 by
OR occurs in the second half of the [D phase,
while the write of the loaded data occurred in

the first half.

Situations that the pipeline hazard detection hardware can see by comparing the

destination and sources of adjacent instructions.

Hazard Detection Unit Operation

CMPES550 - Shaabanl—

#27 Lec#2 Fall 2017 9-5-2017

Static Compiler Instruction Scheduling (Re-Ordering)
for Data Hazard Stall Reduction

« Many types of stalls resulting from data hazards are very
frequent. For example:

A=B+C

produces a stall when loading the second data value (B).

e Rather than allow the pipeline to stall, the compiler could
sometimes schedule the pipeline to av0|d stalls.

™ or reduce

l.e re- order instructions

o Compiler pipeline or instruction scheduling involves
rearranging the code sequence (instruction reordering)
to eliminate or reduce the number of stall cycles.

) Static = At compilation time by the compiler | |
(In_Appendix A) Dynamic = At run time by hardware in the CPU ICM PE550 - Shaaban

#28 Lec#2 Fall 2017 9-5-2017

Static Compiler Instruction Scheduling Example

* For the code sequence:

E

E

i+ a=b+c
L d=e-f

Assuming loads have a latency of one clock cycle, the following
code or pipeline compiler schedule eliminates stalls:

Original code with stalls:

LD Rb,b— e.g. 0(R1)
Stall - Re.c

DADD Ra,Rb,Rc

SD Ra,a

LD Re,e

LD Rf f
Stall ’

DSUB Rd,Re,Rf

SD Rd,d

No stalls for scheduled code

2 stalls for original code

a,b,c,d,e andf
are in memory

Re-order Instructions to eliminate stalls
Scheduled code with no stalls:

LD Rb,b
LD Rc,c
LD Re,e
DADD Ra,Rb,Rc
LD Rf,f
SD Ra,a
DSUB Rd,Re,Rf
SD Rd,d

Pipeline with forwarding assumed here

CMPES550 - Shaaban]—

#29 Lec#2 Fall 2017 9-5-2017

Control Hazards

 When a conditional branch is executed it may change the PC and,
without any special measures, leads to stalling the pipeline for a number
of cycles until the branch condition is known (branch is resolved).

ieversion2 | — Otherwise the PC may not be correct when needed in IF

* In current MIPS pipeline, the conditional branch is resolved in stage 4
(MEM stage) resulting in three stall cycles as shown below:

Branch instruction IF ID EX MEM WB

Branch successor stall stall stall IF ID EX MEM WB

Branch successor + 1 IF ID EX MEM WB

Branch successor + 2 IF ID EX MEM

Branch successor + 3 B\Sta“ CyCIeS IF ID EX

Branch successor + 4 Branch Penalty . —— IF ID
orrect PC available here

Branch successor + 5 (end of MEM cycle or stage) IF

Assuming we always stall or flush the pipeline on a branch instruction:
Three clock cycles are wasted for every branch for current MIPS pipeline

Branch Penalty = stage number where branch is resolved - 1
here Branch Penalty= 4- 1 = 3 Cycles

i.e Correct PC is not available when needed in IF [| ICM PE55O - Shaaban —I_

#30 Lec#2 Fall 2017 9-5-2017

(In Appendix A and 350)

Reducing Branch Stall Cycles

Pipeline hardware measures to reduce branch stall cycles:

1- Find out whether a branch is taken earlier in the pipeline.
2- Compute the taken PC earlier in the pipeline.

In MIPS: I.e Resolve the branch in an early stage in the pipeline

— In MIPS branch instructions BEQZ, BNE, test a register
for equality to zero.

— This can be completed in the 1D cycle by moving the zero
test into that cycle.

— Both PCs (taken and not taken) must be computed early.

— Requires an additional adder because the current ALU is
not useable until EX cycle.

— This results in just a single cycle stall on branches.

As opposed branch penalty = 3 cycles before |_| CMPES50 - Shaaban

#31 Lec#2 Fall 2017 9-5-2017

Branch resolved in stage 2 (ID)
Branch Penalty =2 -1 =1 cycle

Modified MIPS Pipeline:
Conditional Branches Completed

MEMANE

¥

T

Stage 5
WB

Branch Target ALU ~ ﬁ— (resolved) in ID Stage (stage2)
IDVEX
Stage 2 ADD
IFAD EXMEM
ID
wifEEC
0]
u / Stage 3 Stage 4
Compare
A Branch EX MEM
E.10 Registers
IF:_” i5 I—"'
Instraeisn IR |) i L
maru:m i MEMwWE g |Fegisters >F'.L-L| -
= J| Diata
-~ " “ MEmory
= X
IF 16 | Sign 1 3 J
L ¥ tend
Stage 1 '\

into the ID phase of the pipeline.

Pipeline Version 3 (in 350): With Forwarding, Branch resolved in ID stage

(In Appendix A and 350)

The stall from branch hazards can be reduced by moving the zero test and branch target calculation

CMPES550 - Shaaban]—

#32 Lec#2 Fall 2017 9-5-2017

1

2

Compile-Time Reduction of Branch Penalties

How to handle branches in a pipelined CPU?

I.e always stall on a branch

* One scheme discussed earlier is to flush (ffreeze the pipeline by
whenever a conditional branch is decoded by holding or deleting any
Instructions in the pipeline until the branch destination is known
(zero pipeline registers, control lines).

(or assume)

« Another method is to predict that the branch is not taken where the

Most
Common

state of the machine is not changed until the branch outcome is

definitely known. Execution here continues with the next | iepPc+4
Instruction; stall occurs here when the branch is taken.

(or assume)

« Another method is to predict that the branch is taken and begin
fetching and executing at the target; stall occurs here if the branch is

not taken. (harder to implement more on this later).

 Delayed Branch: An instruction following the branch in a branch
delay slot is executed whether the branch is taken or not (part of the

ISA). upporte a S
). | Supported by all RISC ISA CMPE550 - Shaaban_l—

#33 Lec#2 Fall 2017 9-5-2017

Predict Branch Not-Taken Scheme

(or assume) (most common scheme)

Not Taken Branch (no stall)

Untaken branch instruction IF 1D EX MEM WB

Instruction § + 1 I 1D EX MEM WB

Instruction i + 2 IF D EX MEM WB

Instruction § + 3 IF 1D EX MEM WB

Instruction i + 4 IF 1D EX MEM WB
Taken Branch (stall)

Taken branch instruction IF 1D EX MEM WB

Instruction i + 1 Stall I idle idle idle idle

Branch target IF 1D EX MEM WB

Branch target + 1 IF 1D EX MEM WB

Branch target + 2 IF 1D EX MEM WRB

Assuming the MIPS pipeline with reduced branch penalty =1 | j.e Pipeline Version 3

The predict-not-taken scheme and the pipeline sequence when the branch is untaken (top) and taken (bottomj).

Stall when the branch is taken

Pipeline stall cycles from branches = frequency of taken branches X branch penalty

CPI =1 + stall clock cycles per instruction CMPES50 - Shaaban _I_

#34 Lec#2 Fall 2017 9-5-2017

Pipeline Performance Example
e Assume the following MIPS instruction mix:

Type Frequency

Arith/Logic 40%

Load 30% of which 25% are followed immediately by
an instruction using the loaded value | 1 stall

Store 10%

branch 20% of which 45% are taken | 1stall

 What is the resulting CPI for the pipelined MIPS with —
forwarding and branch address calculation in 1D stage [versions

when using a branch not-taken scheme? B\h P—
e CPI = Ideal CPI + Pipeline stall clock cycles per instruction
= 1 + stalls by loads + stalls by branches
= 1 + 3x.25x1 + 2Xx.45x1
= 1 + 075 + .09
= 1.165

CMPES550 - Shaaban]—

#35 Lec#2 Fall 2017 9-5-2017

Static Compiler Branch Prediction

« Static Branch prediction encoded in branch instructions using
one prediction bit =0 = Not Taken, =1 = Taken
— | Must be supported by ISA[Ex: HP PA-RISC, PowerPC, UltraSPARC

* Two basic methods exist to statically predict branches at compile

time:

How?

Branch Encoding

X

—X = Static Prediction bit

1 By examination of program behavior and the use of
Information collected from earlier runs of the program.

— For example, a program profile may show that most forward
branches and backward branches (often forming loops) are
taken. The simplest scheme in this case is to just predict the

X=0 Not Taken X =1 Taken

branch as taken. | program profile-based static branch prediction

2 To predict branches on the basis of branch direction,
choosing backward branches as taken and forward

branches as not taken.

Loop?

Static = By the compiler

Dynamic = By hardware in the CPU

CMPES550 - Shaaban]—

#36 Lec#2 Fall 2017 9-5-2017

Static Branch Prediction Performance:

25t 1 ooy Profile-Based Compiler Branch
Misprediction Rates for SPEC92
20% | 18%
159%
15%
gt
Misprediction rate 12% 1995 127 .
ge, 10%
10% F
2%

More Loops Lo S R N .} n
p d‘ﬁﬁ? & F & F G \gt..
tlé(‘ 'E-';"” ng"‘ & ,,,525 @b o (FP has more loops)

<4— Integer ——» <€— Floating Point ——»
Average 15% Benchmark Average 9%

Misprediction rate for a profile-based predictor varies widely but is
generally better for the FP programs, which have an average misprediction rate of
9% with a standard deviation of 4%, than for the integer programs, which have an
average misprediction rate of 15% with a standard deviation of 5%.

CMPES550 - Shaabanl—

#37 Lec#2 Fall 2017 9-5-2017

/

i.e. ISA Support Needed

Program
Order

The sequential successor instruction are said to be in the branch
delay slots. These instructions are executed whether or not the

<

|SA Reduction of Branch Penalties:

Delayed Branch (action)

When delayed branch is used, the branch is delayed by n cycles,
following this execution pattern:

conditional branch instruction

sequential successor
sequential successor,
sequential successor

branch target if taken

branch is taken.

In Practice, all machines that utilize delayed branching have
a single instruction delay slot. (All RISC ISAs)

The job of the compiler is to make the successor instruction
In the delay slot a valid and useful instruction.

n branch potential action delay slots

These instructions in branch delay slots are
always executed regardless of branch direction

CMPES550 - Shaaban]—

#38 Lec#2 Fall 2017 9-5-2017

Delayed Branch Example

Not Taken Branch (no stall)

Untaken branch instruction IF I EX MEM WEB

Branch delay mstruction (i + 1) IF 1o EXx MEM WH

Instruction { + 2 I 1D EX MEM WB

Instruction i + 3 IF 15 EX MEM WEH

Instruction ¢ + 4 lF 1D Ex MEM WB
Taken Branch (no stall)

Taken branch instruction IF I EX MEM WB

Branch delay mstruction (i + 1) IF 1o EXx MEM WH

Branch target I 1D EX MEM WB

Branch target + | IF I EX MEM WB

Branch target + 2 IF 1D EX MEM WEB

The behavior of a delayed branch is the same whether or not the branch is taken.

Single Branch Delay Slot Used

All RISC ISAs

Assuming branch penalty = 1 cycle

I.e. Pipeline Version # 3

ICI\/IPE550 - Shaaban

#39 Lec#2 Fall 2017 9-5-2017

Delayed Branch-delay Slot Scheduling Strategies

The branch-delay slot instruction can be chosen from
three cases:

A An independent instruction from before the branch:
Always improves performance when used. The branch
must not depend on the rescheduled instruction. | eg From Body of a loop

Most Common

* B Aninstruction from the target of the branch:

Hard Improves performance if the branch is taken and may require

Find INstruction duplication. This instruction must be safe to execute if the
branch is not taken.

v C Aninstruction from the fall through instruction stream:

Improves performance when the branch is not taken. The instruction
must be safe to execute when the branch is taken.

The performance and usability of cases B, C is improved by using
a canceling or nullifying branch.

CMPES550 - Shaaban]—

#40 Lec#2 Fall 2017 9-5-2017

_

Example:
From the
body of a loop

(A) From before

ADD R1, R2, A3

it H2 = 0 then

(B) From target

Delay slot

it R# = 0 then

SUB H4. RS, R =—

AIJD R1, A2, A3

if H1 = 0 than

Delay slot

Batomes

ADD R1, R2, R3

Most Common

ADD A1, A2, A3

if Hi: 0 then

SUB R4, RS, RG

(C) From fall through

ADD R1, R2, R3

it R1 =0 then

Delay slot

SUB R4, A5, AG

ADD W1, R2, R3

if B1 2 0 then

SLB R4, RS, RE

Scheduling the branch-delay slot.

(In Appendix A)

CMPES550 - Shaabanl—

#41 Lec#2 Fall 2017 9-5-2017

Branch-delay Slot: Canceling Branches

(AKA Canceling Delayed Branch Action Slot)

In a canceling branch, a static compiler branch direction
prediction is included with the branch-delay slot

instruction. Branch Encoding w [X = Static Prediction bit
X=0 Not Taken X =1 Taken

 When the branch qoes as predicted, the instruction in the
branch delay slot is executed normally.

 When the branch does not go as predicted the instruction
IS turned into a no-op (i.e. cancelled).

why? o Canceling branches eliminate the conditions on

Instruction selection in delay instruction strategies B, C

* The effectiveness of this method depends on whether we
predict the branch correctly.

CMPES550 - Shaaban]—

#42 Lec#2 Fall 2017 9-5-2017

Scheduling strategy

Requirements

Improves performance when?

{a) From before branch

Branch must not depend on the rescheduled instruc-

HOmns.

Always.

(b) From target

Must be OK to execute rescheduled instructions if
branch 1s not taken, May need to duplicate instruc-

Lions.

When branch is taken. May
enlarge program it instructions are

duplicated.

{c) From fall through

Must be OK to execute instructions if branch is taken.

When branch is not taken.

Pipeline Version # 3 Assumed Here

Branch Goes Not As Predicted

Delayed-branch scheduling schemes and their requirements.

Untaken branch instruction IF 1D EX MEM WEB Cancelled

Branch delay instruction {i + 1) IF ID idle idle idle — Stall or No-OP
Instruction § + 2 IF [EX MEM WH

Instruction i + 3 IF I EX MEM WB
Instruction { + 4 [1D X MEM WEB
Branch Goes As Predicted

Taken branch instruction IF Dy EX MEM WEB Normal

Branch delay instruction (1 + 1) IF 112 EX MEM WBE No Stall

Branch target IF I EX MEM WB

Branch target + 1 I 1D EX MEM WB

Branch target + 2 IF D EX MEM WB

Branch Predicted Taken By Compiler

+ behavior of a predicted-taken cancelling branch depends on whether the branch is taken or not.

Canceling Branch Example — Predicted Taken

ICI\/IPE550 - Shaaban

l

#43 Lec#2 Fall 2017 9-5-2017

Performance Using Canceling Delay Branches

T To Yo o Total %
conditional conditional cancelling branches branches with

branches branches branches with empty or

% conditional with empty that are that are cancelled cancelled

Benchmark branches slots cancelling cancelled delay slots delay slot
compress 14% 18% 3% 43% 13%5% 3%
eqniort 24% 24% S0% 245 125 365
Espresso 15% 29% 1 9% 21% 4% 33%
2Ce 15% 16% 33% 3% 1% 275
li 15% 2005 55% 48 2050 4050
Integer average 17 % 21% Rh 4% 13% 35%
doduc B 33% 1 2% 625% 8% 41%
ear 105 37% 36% 14% 5% 42%
hydro2d 12% 0 0% 24% 16% 17%
mdljdp2 O (5 8O 1045 B 8%
sudcor 3% 7% 1 7% 7% 10% 17%
FP average B 6% 445 3% 9% 25%
Overall average 12% | 8% 41% 4% 1% 0%

Delayed and cancelling delay branches for mips allow branch hazar

for these 10 SPEC benchmarks.

709% Static Prediction Accuracy

ds to be hidden 70%

@ time on average

ICMPE550 - Shaaban

l

#44 Lec#2 Fall 2017 9-5-2017

The MIPS R4000 Integer Pipeline

Implements MIPS64 but uses an 8-stage pipeline instead of the classic 5-
stage pipeline to achieve a higher clock speed.

IF ; IS j RF ; EX DF : DS : TC : WB
Instr;uction memory — Reg |: I/;%) 7 Data memoryé Reg
1 2 3 i 4 5 6 1 8
o Plpel Ine Stages: ™ | Branch resolved here in stage 4 Thus branch penalty = 4-1 = 3 cycles

— IF: First half of instruction fetch. Start instruction cache access.

— IS: Second half of instruction fetch. Complete instruction cache access.
— RF: Instruction decode and register fetch, hazard checking.

— EX: Execution including branch-target and condition evaluation.

— DF: Data fetch, first half of data cache access. Data available if a hit.

— DS: Second half of data fetch access. Complete data cache access. Data available if a
cache hit

— TC: Tag check, determine data cache access hit.
— WB: Write back for loads and register-register operations.

— Branch resolved in stage 4. Branch Penalty = 3 cycles if taken (2 with

branch delay slot) CMPES550 - Shaabanl}-

In Appendix A
(PP) #45 Lec#2 Fall 2017 9-5-2017

Deeper Pipelines = More Stall Cycles and Higher CPI

Program Order

T=1xCPlI xC

LW data available here

MIPS R4000 Example

Time (in clock cycles) \

Forwarding of LW Data

« Even with forwarding the deeper pipeline leads to
a 2-cycle load delay (2 stall cycles).

CC1 ccC2 . CC3 . CcCC4 CC5 CCG\ ccz . ccs . €C9 . CcC10 : cCC11
LD R1 Instruction memory 4 Reg | V% ; Data mamery Reg
Instruction 1 Instruction memofry —H Reg V;; , I::Data memory Reg
Instruction 2 Instrﬂction memory - Reg | ;é ll ,/, Data memory | Reg
ADDD R2, R1 Instruction memofy Reg V;?{ - pata memory Reg

As opposed to 1-cycle in classic 5-stage pipeline

(In Appendix A)

CMPES550 - Shaaban]—

#46 Lec#2 Fall 2017 9-5-2017

Pipelining and Handling of Exceptions

e EXceptions are events that usually occur in normal program execution
where the normal execution order of the instructions is changed (often
called: interrupts, faults).

» Types of exceptions include:

e 1/O device request

 Invoking an operating system service
e Tracing instruction execution

* Breakpoint (programmer-requested interrupt).
 Integer overflow or underflow

 FP anomaly

e Page fault (not in main memory)

e Misaligned memory access
 Memory protection violation

« Undefined instruction

e Hardware malfunctions

ICI\/IPE55O - Shaaban

#47 Lec#2 Fall 2017 9-5-2017

Characteristics of Exceptions

Synchronous vs. asynchronous:

Synchronous: occurs at the same place with the same data and memory allocation
Asynchronous: Caused by devices external to the processor and memory.

User requested vs. coerced:
User requested: The user task requests the event.
Coerced: Caused by some hardware event.

User maskable vs. user nonmaskable:
User maskable: Can be disabled by the user task using a mask.

Within vs. between instructions:
Whether it prevents instruction completion by happening in the middle of execution.

Resuming vs. terminating:
Terminating: The program execution always stops after the event.

Resuming: the program continues after the event. The state of the pipeline must be
saved to handle this type of exception. The pipeline is restartable in this case.

ICI\/IPE55O - Shaaban

#48 Lec#2 Fall 2017 9-5-2017

Handling of Resuming Exceptions

* A resuming exception (e.g. a virtual memory page fault) usually
requires the intervention of the operating system.

To handle the exception

» The pipeline must be safely shut down and its state saved for
the execution to resume after the exception is handled as
follows:

1| Force a trap instruction into the pipeline on the next IF.

2] Turn of all writes for the faulting instruction and all (following)
Instructions in the pipeline. Place zeroes into pipeline latches
starting with the instruction that caused the fault to prevent

state changes.

is invoked

3| The exception handling routine of the operating system
saves the PC of the faulting instruction and other state data
to be used to return from the exception.

/

i.e save program state ICl\/l PES50 - Shaaban _l_

#49 Lec#2 Fall 2017 9-5-2017

Exception Handling Issues:

Precise Exception Handling

 When using delayed branches, as many PCs as the the
length of the branch delay plus one need to be saved and
restored to restore the state of the machine.

« After the exception has been handled special instructions
are needed to return the machine to the state before the
exception occurred (RFE, Return to User code in MIPS).

- ¢ | Precise exceptions and handling imply that a pipeline is
stopped so the instructions just before the faulting
Instruction are completed and and those after it can be

rEStarted from SC ratCh) After handling the exception (i.e. As if processor is not pipelined)

e Machines with arithmetic trap handlers and demand
paging must support precise exceptions.

I.e Precise exception handling imply handling exceptions

as if the processor is not pipelines .CM PES50 - Shaaban _l_

#50 Lec#2 Fall 2017 9-5-2017

Program Order
“—

Exceptions in MIPS Integer Pipeline
* The following represent problem exceptions for the MIPS
5 pipeline stages:

memory-protection violation.

Page fault on instruction fetch; misaligned memory access;

Undefined or illegal opcode

Arithmetic exception

memory-protection violation

Page fault on data fetch; misaligned memory access;

None
« Example: LD IF 1D EX
DADD IF 1D

MEM WB
EX MEM WB

can cause a data page fault and an arithmetic exception at the same

time (LD in MEM and DADD in EX)

Handled by dealing with data page fault and then restarting execution,
then the second exception will occur but not the first.

I.e handle exceptions in program order one at a time

(as if processor is not pipelined)

ICI\/IPE55O - Shaaban

#51 Lec#2 Fall 2017 9-5-2017

Precise Exception Handling in MIPS
(i.e MIPS Integer Single-Issue In-Order Pipeline)

* The instruction pipeline is required to handle exceptions of

Instruction 1 before those of instruction 1+1 | ieinprogram order

 The hardware posts all exceptions caused by an instruction in a
status vector associated with the instruction which is carried
along with the instruction as it goes through the pipeline.

Once an exception indication is set in the vector, any control

signals that cause a data value write is turned off. | For the following instructio

When an instruction enters WB the vector is checked, if any

exceptions are posted, they are handled in the order they would

be handled in an unpipelined machine.

i.e in program order

Any action taken in earlier pipeline stages is invalid but cannot

change the state of the\ machine since writes where disabled.

I.e by later instructions in program order

CMPES550 - Shaaban]—

#52 Lec#2 Fall 2017 9-5-2017

Floating Point/Multicycle Pipelining in MIPS

Completion of MIPS EX stage floating point arithmetic operations in one
or two cycles is impractical since it requires:

« A much longer CPU clock cycle, and/or

Solution:

* An enormous amount of logic.

Instead, the floating-point pipeline will allow for a longer latency (more
EX cycles than 1).

Floating-point operations have the same pipeline stages as the integer
Instructions with the following differences:

— The EX cycle may be repeated as many times as needed (more than 1 cycle)
— There may be multiple floating-point functional units.

— A stall will occur if the instruction to be issued either causes a structural
hazard for the functional unit or cause a data hazard.

The latency of functional units is defined as the number of intervening (stall?
cycles between an instruction producing the result and the instruction
that uses the result (usually equals stall cycles with forwarding used).

The initiation or repeat interval is the number of cycles that must elapse

(In

between issuing an instruction of a given type.
CMPES50 - Shaaban|i-

Appendix A) to the same functional unit
#53 Lec#2 Fall 2017 9-5-2017

Extending The MIPS Pipeline
to Handle Floating-Point
Operations:

Adding Non-Pipelined
Floating Point Units

EX
Integer unit

‘ EX '
FPfinteger [
multiply
EX
| FP adder .

EX

FP/integer

I divider |

The MIPS pipeline with three additional unpipelined, floating-point functional units
(FP FUs)

ICMPE550 - Shaaban

(In Appendix A)

#54 Lec#2 Fall 2017 9-5-2017

Extending The MIPS Pipeline:
Multiple Outstanding Floating Point Operations

Latency =0

Latency = 6 Integer Unit o
Initiation Interval = 1 4/ Initiation Interval = 1
Pipelined = Hazards:
RAW, WAW possible
WAR Not Possible
. . i Structural: Possible
Floating Point (FP)/Integer Multiply Control: Possible
M M2 M3 M4 M5 M& M7
EX
IF ID MEM
FP Adder WB
AT A2 A3 Ad
Super-pipelined CPU:
Latency = 3 A pipelined CPU with
Initiation Interval = 1 FP/Integer Divider pipelined FP units
Pipelined "
| Latency = 24
In-Order = Start of instruction execution In't'at!on _I nterval = 25
\ done in program order Non-pipelined
\ A pipeline that supports multiple outstanding FP operations.

In-Order Single-Issue MIPS Pipeline with FP Support

(In Appendix A) Pipelined CPU with pipelined FP units = Super-pipelined CPU

CMPES550 - Shaaban]—

#55 Lec#2 Fall 2017 9-5-2017

Latencies and Initiation Intervals For
Functional Units (FUS) [stownin fstsiice

Functional Unit Latency Initiation Interval
Integer ALU 0 1
Data Memory 1 1
(Integer and FP Loads)
FP add 3 1
FP multiply 6 1
(also integer multiply)
FP divide 24 25
(also integer divide) Not Pi;elined

Latency usually equals stall cycles when full forwarding is used

ICI\/IPE550 - Shaaban

(In Appendix A)

#56 Lec#2 Fall 2017 9-5-2017

Pipeline Characteristics With FP Support

Instructions are still processed in-order in IF, ID, EX at the
rate of one instruction per cycle.

Longer RAW hazard stalls likely due to long FP latencies.

Structural hazards possible due to varying instruction times

and FP latencies:

— FP unit may not be available (not pipelined?) ; divide in this
case.

— MEM, WB reached by several instructions simultaneously.

WAW hazards can occur since it is possible for instructions
to reach WB out-of-order.

WAR hazards impossible, since register reads occur in-

Order N I D i.e Before a following instruction L Provided no WAW hazard results

overwrites value

- /
Instructions can be allowed to complete out-of-order
requiring special measures to enforce precise exceptions.

(In Appendix A)

Order = Program order ICl\/l PES50 - Shaaban _l—

#57 Lec#2 Fall 2017 9-5-2017

S

> [MUL.D

o

S

o

l ADD.D
L.D
S.D

f

FP ADD =4 EX Cycles

FP Operations Pipeline Timing Example

FP Multiply =7 EX cycles

CCli CC2; CC3:CC4 i CC5i CC6i CC7 i CC8 i CC9:CCI0:cCC1l
IF ID M1 M2 | M3 | M4 { M5 | M6 | M7 | MEM| WB
IF | ID { Al { A2 | A3 | A4 |MEM |WB
Example illustrating
IF ID EX |[MEM |WB that instructions can
reach WB stage and
Complete Out of order
(i.e out of program order).
Thus Write-After-Write
(WAW) hazards can
IE ID Ex |mem | wB occur in this pipeline

All above instructions are assumed independent

(In Appendix A)

When run on In-Order Single-1ssue MIPS Pipeline with FP Support
With FU latencies/initiation intervals given in slides 54-55

Potential WAW Hazard Example

1 CMPESS50 - Shaaban]—

#58 Lec#2 Fall 2017 9-5-2017

<4— Program Order

(with full data forwarding in place)

FP Code RAW Hazard Stalls Example

As indicated in slides 54-55: FP Multiply Functional Unit has 7 EX cycles (and 6 cycle latency 6 = 7-1)

FP Add Functional Unit has 4 EX cycles (and 3 cycle latency 3 = 4-1)

S.D F2, 0(R2)

cc1i cc2 ccd cc4i cCsi ccel cCc7i ccs! ccol CC10i cClli CCl2i CC13} CCl4! CCi5i CCl6i CC17 | CCl8

L.D F4, 0(R2)
IF} ID| EX]| MEM| WB
gi
MUL.D FO, F4, F6] |F 1D STA'—'—‘ M1l M2] M3| M4| M5 M6] M7} MEM| WB
H \ B
ADD.D F2, FO, F8 IF‘STALL ID STALL|STALLJSTALL STALL‘STALL‘STALL Al A2 A3 A4 MeEM| WB

IF STALLJSTALLYSTALL STALL‘STALL‘STALL ID EX ‘STALL‘STALL STALLI MEM WB

When run on In-Order Single-1ssue MIPS Pipeline with FP Support
With FP latencies/initiation intervals given in slides 54-55

6 stall cycles which equals latency of FP multiply functional unit

Third stall due
to structural hazard
in MEM stage

(In Appendix A)

CMPES550 - Shaaban]—

#59 Lec#2 Fall 2017 9-5-2017

<4— Program Order

FP Code Structural Hazards Example

CC1i CC2i CC3 CC4; CC5. CC6; CC7; CC8; CC9: CC10i CC1l;

WB

MULTD FO,F4,F6| |IF | ID | M1|{M2 { M3| M4| M5 | M6 | M7} MEM

.. . (integer) IF | ID | EX{MEM|WB

.. . (integer) IF | ID { EX |MEM|WB

ADDD F2, F4, F6 IF] ID| A1] A2 | A3 | A4 |MEM|WB

_. . (integer) | F]| o] EX|™mMEM| WB

.. . (integer) IF ID{ EX |MEM| WB

LD F2, 0(R2) 1| 0| Eex|vem{ws

When run on In-Order Single-lssue MIPS Pipeline with FP Support C M P E550 - Shaaban
|

With FP latencies/initiation intervals given in slides 54-55

#60 Lec#2 Fall 2017 9-5-2017

L i.e. with FP support

Maintaining Precise Exceptions in Multicycle Pipelining

 Inthe MIPS code segment: DIV.D FO0, F2, F4 | FExceptionGenerated
ADD.D F10, F10, F8
SUB.D F12, F12, F14 | > Aiready Done
« The ADD.D, SUB.D instructions can complete before DIV.D is completed
causing out-of-order execution completion.

« If DIV.D causes a floating-point arithmetic exception, precise exception
handling is harder since both ADD.D, SUB.D have already completed.

* Four approaches have been proposed to remedy this type of situation:

1 Ignore the problem and settle for imprecise exception.

2 Buffer the results of the operation until all the operations issues
earlier are done. (large buffers, multiplexers, comparators) e.g stall we

3 A history file keeps track of the original values of registers
(CYBER180/190, VAX) Used to restore original register values if needed

4 A Future file keeps the newer value of a register; when all earlier /

Instructions have completed the main register file is updated from the

uonajdwod JapJo-ul 82104 9°1

future file. On an exception the main register file has the precise
values for the interrupted state.

ICI\/IPE55O - Shaaban

In Appendix A
(PP) #61 Lec#2 Fall 2017 9-5-2017

