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•• Instruction Pipelining Review:Instruction Pipelining Review:
–– MIPS InMIPS In--Order SingleOrder Single--Issue Integer PipelineIssue Integer Pipeline
–– Performance of Pipelines with StallsPerformance of Pipelines with Stalls
–– Pipeline HazardsPipeline Hazards

• Structural hazards
• Data hazards

–– Minimizing Data hazard Stalls by ForwardingMinimizing Data hazard Stalls by Forwarding
–– Data Hazard ClassificationData Hazard Classification
–– Data Hazards Present in Current MIPS PipelineData Hazards Present in Current MIPS Pipeline

• Control hazards
–– Reducing Branch Stall CyclesReducing Branch Stall Cycles
–– Static Compiler Branch PredictionStatic Compiler Branch Prediction
–– Delayed Branch SlotDelayed Branch Slot

•• Canceling Delayed Branch SlotCanceling Delayed Branch Slot

•• Pipelining and Handling of ExceptionsPipelining and Handling of Exceptions
– Precise exception Handling

•• Extending The MIPS Pipeline to Handle FloatingExtending The MIPS Pipeline to Handle Floating--Point  OperationsPoint  Operations
–– Pipeline Characteristics With FP SupportPipeline Characteristics With FP Support
–– Maintaining Precise Exceptions in FP/Multicycle PipeliningMaintaining Precise Exceptions in FP/Multicycle Pipelining

(In  Appendix A)

Pipelined MIPS CPU Design from 350
(Comp. Org.)
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Instruction Pipelining ReviewInstruction Pipelining Review
• Instruction pipelining is CPU implementation technique where multiple 

operations on a number of instructions are overlapped.
– Instruction pipelining exploits Instruction-Level Parallelism (ILP)

• An instruction execution pipeline involves a number of steps, where each step 
completes a part of an instruction.  Each step is called a pipeline stage or a pipeline 
segment.

• The stages or steps are connected in a linear fashion:  one stage to the next to 
form the pipeline -- instructions enter at one end and progress through the stages 
and exit at the other end.

• The time to move an instruction one step down the pipeline is is equal to the 
machine cycle and is determined by the stage with the longest processing delay.

• Pipelining increases the CPU instruction throughput:  The number of instructions 
completed per cycle.

– Under ideal conditions (no stall cycles),  instruction throughput is one 
instruction per machine cycle, or  ideal  CPI = 1

• Pipelining does not reduce the execution time of an individual instruction:  The 
time needed to complete all processing steps of an instruction (also called 
instruction completion latency).  
– Minimum instruction latency =   n cycles,    where n is the number of pipeline 

stages
(In  Appendix A and 350)

The pipeline described here is called an in-order pipeline because 
instructions are processed or executed in the original program order

1 2 3 4 5

Pipelining may actually increase individual instruction latency

Order = Program order

Or IPC = 1 T =  I  x  CPI   x C
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Generic CPU Machine Instruction Processing StepsGeneric CPU Machine Instruction Processing Steps

Instruction
Fetch

Instruction
Decode

Operand
Fetch

Execute

Result
Store

Next
Instruction

Obtain instruction from program storage

Determine required actions and instruction size

Locate and obtain operand data

Compute result value or status

Deposit results in storage for later use

Determine successor or next instruction

(Implied by The Von Neumann Computer Model)(Implied by The Von Neumann Computer Model)

Major CPU Performance Limitation:  The Von Neumann computing modelNeumann computing model

implies implies sequential executionsequential execution one instruction at a timeone instruction at a time

The Program Counter (PC) points to next instruction to be processed

(i.e Update PC)

PC

Update PC
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MIPS InMIPS In--Order SingleOrder Single--Issue Integer Pipeline Issue Integer Pipeline 
Ideal OperationIdeal Operation

Clock Number                      Time in clock cycles →
Instruction Number        1        2           3              4 5                6                7               8                9

Instruction I                    IF       ID         EX         MEM       WB
Instruction I+1                           IF         ID         EX          MEM       WB
Instruction I+2                                        IF       ID           EX           MEM      WB
Instruction I+3                                                 IF           ID             EX           MEM         WB
Instruction I +4                                                IF             ID           EX         MEM     WB

Time to fill the pipeline

MIPS Pipeline Stages:

IF         =  Instruction Fetch
ID        =  Instruction Decode
EX       =  Execution
MEM  =  Memory Access
WB     =  Write Back

First instruction, I
Completed

Last instruction, 
I+4 completed

n= 5 pipeline stages      Ideal CPI =1 

(In  Appendix A)

Fill Cycles =  number of stages -1

4 cycles = n -1 = 5 -1

(No stall cycles)

Ideal pipeline operation without any stall cycles
In-order =  instructions executed in original program order

(or IPC =1)

(Classic 5-Stage)
Pr

og
ra

m
 O

rd
er

i.e execution in program order

1
2
3
4
5
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A Pipelined MIPS Integer DatapathA Pipelined MIPS Integer Datapath
• Assume register writes occur in first half of cycle and register reads occur in second half.

(In  Appendix A and 350)

Taken Branch Penalty = 4 -1 = 3 cycles

Branches resolved
Here in MEM (Stage 4)

IF

ID EX

MEM

WB

Classic Five Stage 
Integer Single-Issue
In-Order Pipeline
for MIPS

Stage 1

Stage 2 Stage 3

Stage 4

Stage 5

Pipeline Version 1 (in 350):   No Forwarding, Branch resolved in MEM stage 
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(In  Appendix A and 350)

IF                   ID                        EX               MEM               WB

Read operand registers
in second half of ID cycle

Write destination register
in first half of WB cycle

Operation of ideal integer in-order 5-stage pipeline

1

2

3

4

5

IF                   ID                        EX               MEM               WB

IF                   ID                        EX               MEM               WB

IF                   ID                        EX               MEM               WB

IF                   ID                        EX               MEM               WB
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Pipelining Performance ExamplePipelining Performance Example
• Example:   For an unpipelined CPU: 

– Clock cycle = 1ns, 4 cycles for ALU operations and branches 
and 5 cycles for memory operations with instruction frequencies 
of  40%, 20% and 40%, respectively.

– If pipelining adds  0.2 ns to the machine clock cycle then the 
speedup in instruction execution from pipelining is:

Non-pipelined Average instruction execution time =  Clock cycle  x Average CPI

= 1 ns x ((40% + 20%) x 4 + 40%x 5) = 1 ns x 4.4 = 4.4 ns

In the pipelined implementation five stages are used with  an 
average instruction execution time of: 1 ns + 0.2 ns = 1.2 ns
Speedup from pipelining   =    Instruction time unpipelined

Instruction time pipelined
=  4.4 ns / 1.2 ns  = 3.7  times faster

CPI = 1

CPI = 4.4

T = I x CPI x C   here I did not change
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Pipeline HazardsPipeline Hazards
• Hazards are situations in pipelining which may prevent the 

next instruction in the instruction stream from executing 
during the designated clock cycle possibly resulting in one or 
more stall (or wait) cycles.

• Hazards reduce the ideal speedup (increase CPI > 1) gained 
from pipelining and are classified into three classes:
– Structural hazards: Arise from hardware resource conflicts

when the available hardware cannot support all possible 
combinations of instructions.

– Data hazards: Arise when an instruction depends on the 
result of a previous instruction in a way that is exposed by the 
overlapping of instructions in the pipeline

– Control hazards: Arise from the pipelining of conditional  
branches and other instructions that change the PC

(In  Appendix A and 350)

i.e A resource the instruction requires for correct
execution is not available in the cycle needed

Resource 
Not available:

Hardware
Component

Correct
Operand
(data) value

Correct
PC

Hardware structure (component) conflict

Operand not ready yet
when needed in EX or ID

Correct PC not available when needed in IF
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Performance of Pipelines with StallsPerformance of Pipelines with Stalls
• Hazard conditions in pipelines may make it necessary to stall the 

pipeline by a number of  cycles  degrading  performance from 
the ideal pipelined CPU  CPI of 1.

CPI pipelined  =  Ideal CPI  +  Pipeline stall clock cycles per instruction
=          1          + Pipeline stall clock cycles per instruction

• If pipelining overhead is ignored and we assume that the stages are 
perfectly balanced  then speedup from pipelining is given by:

Speedup  =   CPI unpipelined / CPI pipelined 
=  CPI unpipelined / (1 + Pipeline stall cycles per instruction)

• When all instructions in the multicycle CPU take the same number of 
cycles equal to the number of pipeline stages then:

Speedup  =  Pipeline depth / (1 +  Pipeline stall cycles per instruction) 

(In  Appendix A and 350)
T =  I  x  CPI   x C IPC= 1/CPI

Average
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Structural (or Hardware) HazardsStructural (or Hardware) Hazards
• In pipelined machines  overlapped instruction execution 

requires pipelining of functional units and duplication of 
resources to allow all possible combinations of instructions 
in the pipeline.

• If a hardware resource conflict arises due to a hardware 
resource being required by more than one instruction in a 
single cycle, and one or more such instructions cannot be 
accommodated,  then a structural hazard has occurred, 
for example:
– when a pipelined machine (CPU) has a shared single-

memory pipeline stage for data and instructions.
→ stall the pipeline for one cycle for memory data access

(In  Appendix A and 350)

i.e A hardware component the instruction requires for correct
execution is not available in the cycle needed

e.g.

May need stall cycles to prevent hardware structures conflicts

i.e. Load/Store Instructions
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MIPS with MemoryMIPS with Memory
Unit Structural HazardsUnit Structural Hazards

(In  Appendix A and 350)

One shared memory for
instructions and data

Pr
og

ra
m

 O
rd

er

Or store

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM
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Resolving A StructuralResolving A Structural
Hazard with StallingHazard with Stalling

(In  Appendix A and 350)

One shared memory for
instructions and data

Stall or wait
Cycle

CPI = 1 + stall clock cycles per instruction =  1  +  fraction of loads and stores x 1

Instructions 1-3 above are assumed to be instructions other than loads/stores

Pr
og

ra
m

 O
rd

er

Or store

IF ID EX MEM WB

IF ID EX MEM
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A Structural Hazard ExampleA Structural Hazard Example
• Given that data references are  40%  for a specific 

instruction mix or program,  and that the ideal pipelined 
CPI ignoring hazards is equal to  1. 

• A machine with a data memory access structural hazards 
requires a single stall cycle for data references and  has a 
clock rate 1.05 times higher than the ideal machine.   
Ignoring other performance losses for this machine:

Average instruction time   =   CPI  X  Clock cycle time
Average instruction time   =  (1 +  0.4  x 1)   x  Clock cycle ideal

1.05
=  1.3   X  Clock cycle time ideal 

CPI = 1.4

i.e.  CPU without structural hazard is 1.3 times faster

(i.e loads/stores)

(In  Appendix A and 350)
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Data HazardsData Hazards
• Data hazards occur when the pipeline changes the order of 

read/write accesses to instruction operands in such a way that 
the resulting access order differs from the original sequential 
instruction operand access order of the unpipelined machine 
resulting in incorrect execution.

• Data hazards may require one or more instructions to be 
stalled to ensure correct execution.

• Example:
DADD   R1, R2, R3
DSUB    R4, R1, R5
AND   R6, R1, R7
OR      R8,R1,R9
XOR   R10, R1, R11

– All the instructions after DADD use the result of the DADD instruction
– DSUB, AND instructions need to be stalled for correct execution.

(In  Appendix A and 350)

1
2
3
4
5

Arrows represent data dependencies
between instructions

Instructions that have no dependencies among 
them are said to be parallel or independent

A high degree of  Instruction-Level Parallelism (ILP)
is present in a given code sequence if it has a large
number of parallel instructions

i.e Correct operand data not ready yet when needed in EX cycle

CPI = 1 + stall clock cycles per instruction

Producer of 
Result (data)

Consumers of 
Result (data)
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Figure A.6 The use of the result of the DADD instruction in the next three instructions
causes a hazard, since the register is not written until after those instructions read it.

Data Data 
Hazard ExampleHazard Example

(In  Appendix A)

1

2

3

4

5

Two stall cycles are needed here
(to prevent data hazard)

Pr
og

ra
m

 O
rd

er
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Minimizing Data Hazard Stalls by Minimizing Data Hazard Stalls by ForwardingForwarding
• Data forwarding is a hardware-based technique (also called 

register bypassing or short-circuiting) used to eliminate or  
minimize data hazard stalls.

• Using forwarding hardware, the result data of an instruction is 
copied directly from where it is produced  (ALU, memory read 
port etc.),  to where  subsequent instructions need it (ALU input 
register, data memory write port etc.)

• For example, in the MIPS integer pipeline with forwarding:
– The ALU result from the EX/MEM register may be forwarded or fed 

back to the ALU  input latches as needed instead of the register
operand value read in the  ID stage.

– Similarly, the Data Memory Unit result from the MEM/WB  register 
may be fed back to the ALU input latches as needed .

– If the forwarding hardware detects that a previous ALU operation is to 
write the register corresponding to a source for the current ALU
operation, control logic selects  the  forwarded result as the ALU input 
rather than the value read from the register file.

(In  Appendix A and 350)
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Forwarding Paths Added

EX MEM WBID

1

3

2

1
2
3

1
2
3

Pipeline Version 2 (in 350): With Forwarding, Branch resolved in MEM stage 
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PipelinePipeline
with Forwardingwith Forwarding

A set of instructions that depend on the DADD result uses forwarding paths to avoid the data hazard

(In  Appendix A and 350)

Forward

Forward

1

2

3

4

5

Pr
og

ra
m
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rd

er
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Load/Store Forwarding ExampleLoad/Store Forwarding Example

Forwarding of operand required by store during MEM

Load

Store

1

2

3

Pr
og

ra
m

 O
rd

er

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM
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Data Hazard ClassificationData Hazard Classification
Given two instructions  I,  J,  with  I occurring before  J 
in an instruction stream (program execution order):

• RAW  (read after write): A true data dependence violation

J tried to read a source before I writes to it, so  J
incorrectly gets the old value.

• WAW (write after write): A name dependence violation

J tries to write an operand before it is written by  I
The writes end up being performed in the wrong order.

• WAR (write after read): A name dependence violation

J tries to write to a destination before it is read by I,
so I incorrectly gets the new value.

• RAR (read after read): Not a hazard.

I
..
..

J

Program
Order
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Data Hazard ClassificationData Hazard Classification
I (Write)

Shared
Operand

J (Read)

Read after Write  (RAW)

I (Read)

Shared
Operand

J (Write)

Write after Read (WAR)

I (Write)

Shared
Operand

J (Write)
Write after Write  (WAW)

I (Read)

Shared
Operand

J (Read)

Read after Read  (RAR) not a hazard

I
..
..

J

Program
Order

e.g  ADD.D  F2, F1, F0

e.g  ADD.D  F8, F2, F9

e.g  ADD.D  F2, F1, F0

e.g  ADD.D  F1, F3, F4

e.g  ADD.D  F2, F1, F0

e.g  ADD.D  F2, F5, F7

e.g  ADD.D  F2, F4, F6

e.g  ADD.D  F8, F4, F6

Or Name

Or Name

Producer of Result

Consumer of Result
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Data Hazards Present in Current MIPS PipelineData Hazards Present in Current MIPS Pipeline
• Read after Write  (RAW) Hazards:  Possible?

– Results from true data dependencies between instructions.
– Yes possible, when an instruction requires an operand  generated by a preceding 

instruction with distance less than four.
– Resolved by:

• Forwarding  and/or  Stalling.
• Write after Read (WAR) Hazard:

– Results when an instruction overwrites the result of an instruction before all 
preceding instructions have read it.

• Write after Write (WAW) Hazard:
– Results when an instruction writes into a register or memory location before a 

preceding instruction have written its result.
• Possible? Both WAR and WAW are impossible in the current pipeline.  

Why?
– Pipeline processes instructions in the same sequential order as in the program.
– All instruction operand reads are completed (in ID) before a following 

instruction overwrites the operand (in WB).
→ Thus WAR is impossible in current MIPS pipeline.

– All instruction result writes are done in the same program order.
→ Thus WAW is impossible in current MIPS pipeline.

MIPS in-order integer pipeline

i.e In-Order Integer Pipeline

i.e WAW impossible because
instructions reach WB stage

in program order
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Data Hazards Requiring Stall CyclesData Hazards Requiring Stall Cycles
• In some code sequence cases,  potential data hazards 

cannot be handled by bypassing.   For example:

LD       R1, 0 (R2)
DSUB   R4, R1, R5
AND     R6, R1, R7
OR       R8, R1, R9

• The LD (load double word) instruction has the data in 
clock cycle 4 (MEM cycle).

• The DSUB instruction needs the data of R1 in the 
beginning of that cycle.

• Hazard prevented by hardware pipeline interlock 
causing a stall cycle.

(In  Appendix A)

i.e. a load instruction followed 
immediately with an instruction 
that uses the loaded value

RAW

Even with forwarding
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(In  Appendix A and 350)

One stall needed

A Data Hazard Requiring A Stall:A Data Hazard Requiring A Stall:
A load instruction followed 
immediately with an instruction 
that uses the loaded value

1

2

3

4

Pr
og

ra
m

 O
rd

er

IF ID EX MEM WB
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Hardware Pipeline InterlocksHardware Pipeline Interlocks
• A hardware pipeline interlock detects a data hazard and 

stalls the pipeline until the hazard is cleared.
• The CPI for the stalled instruction increases by the 

length of the stall.
• For the Previous example,  (no stall cycle):

LD R1, 0(R1)          IF     ID       EX         MEM          WB
DSUB R4,R1,R5               IF        ID         EX             MEM     WB
AND R6,R1,R7                             IF          ID         EX        MEM       WB
OR R8, R1, R9                                           IF      ID         EX           MEM      WB

With Stall Cycle:

LD R1, 0(R1)           IF     ID       EX         MEM         WB
DSUB R4,R1,R5               IF        ID         STALL      EX  MEM    WB
AND R6,R1,R7                              IF        STALL       ID            EX        MEM      WB
OR R8, R1, R9                                           STALL   IF            ID          EX           MEM     WB

(In  Appendix A)

Stall + Forward

Incorrect Execution

Correct Execution

One stall
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DSUB R4, R1,R5

LD R1,0(R1)

Stall

One Stall

Stall
+

Forward

A Data Hazard Requiring A Stall:A Data Hazard Requiring A Stall:
A load followed immediately by an instruction that uses the loaded value
in EX stage results in a single stall cycle even with forwarding as shown.

Stall one cycle then, 
forward data  of “LD”
instruction to “DSUB”
instruction

First stall one cycle then forward

Then

1

2

3

4

Pr
og

ra
m

 O
rd

er

IF ID EX MEM WB
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Stall + forward

Hazard Detection Unit Operation

Stall + Forward

Forward
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Static Compiler Instruction Scheduling (ReStatic Compiler Instruction Scheduling (Re--Ordering)  Ordering)  
for Data Hazard Stall Reductionfor Data Hazard Stall Reduction

• Many types of stalls resulting from data hazards are very 
frequent.  For example:  

A  =  B +  C

produces a stall when loading the second data value (B).

• Rather than allow the pipeline to stall, the compiler could 
sometimes schedule the pipeline to avoid stalls.

• Compiler pipeline or instruction scheduling involves 
rearranging the code sequence (instruction reordering) 
to eliminate or reduce the number of stall cycles.

(In  Appendix A)
Static =  At  compilation time by the compiler
Dynamic = At run time by hardware in the CPU

or reducei.e re-order instructions
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Static Compiler Instruction Scheduling ExampleStatic Compiler Instruction Scheduling Example
• For the code sequence:

a = b + c
d = e - f

• Assuming loads have a latency of one clock cycle,  the following
code or pipeline compiler schedule eliminates stalls:

a, b, c, d ,e, and f
are in memory

Scheduled code with no stalls:
LD Rb,b
LD Rc,c
LD Re,e 
DADD Ra,Rb,Rc
LD Rf,f
SD  Ra,a 
DSUB Rd,Re,Rf
SD Rd,d

Original code with stalls:
LD Rb,b
LD Rc,c
DADD Ra,Rb,Rc
SD  Ra,a 
LD Re,e 
LD Rf,f
DSUB Rd,Re,Rf
SD Rd,d

Stall

Stall

2 stalls for original code
No stalls for scheduled code

Re-order Instructions to eliminate stalls

Pipeline with forwarding assumed here

e.g. 0(R1)

1

2

1

2
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Control HazardsControl Hazards
• When a conditional branch is executed it may change the PC and, 

without any special measures, leads to stalling the pipeline for a number 
of cycles until the branch condition is known (branch is resolved).
– Otherwise the PC may not be correct when needed in IF

• In current MIPS pipeline, the conditional branch  is resolved in stage 4 
(MEM stage) resulting in three stall cycles as shown below:   

Branch instruction        IF    ID    EX    MEM   WB
Branch successor                 stall    stall   stall      IF ID    EX     MEM   WB
Branch successor + 1                                            IF     ID     EX        MEM   WB  
Branch successor + 2                                            IF     ID          EX        MEM
Branch successor + 3                                            IF          ID          EX
Branch successor + 4                                            IF          ID
Branch successor + 5                                            IF

Assuming we always stall or flush the pipeline on a branch instruction: 
Three clock cycles are wasted for every branch for current MIPS pipeline

Branch Penalty = stage number where branch is resolved - 1      
here   Branch Penalty =   4 - 1  =  3 Cycles

3 stall cycles

(In  Appendix A and 350)

Branch Penalty Correct PC available here
(end of MEM cycle or stage)

i.e Correct PC is not available when needed in IF

i.e version 2
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Reducing Branch Stall CyclesReducing Branch Stall Cycles
Pipeline hardware measures to reduce branch stall cycles:
1- Find out whether a branch is taken earlier in the pipeline. 
2- Compute the taken PC earlier in the pipeline.

In MIPS:
– In MIPS branch instructions BEQZ, BNE, test a register 

for equality to zero.
– This can be completed in the ID cycle by moving the zero 

test into that cycle.
– Both PCs (taken and not taken) must be computed early.
– Requires an additional adder because the current ALU is 

not useable until EX cycle.
– This results in just a single cycle stall on branches. 

i.e Resolve the branch in an early stage in the pipeline

As opposed branch penalty = 3 cycles before
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Modified MIPS Pipeline:Modified MIPS Pipeline:
Conditional Branches Completed Conditional Branches Completed 
(resolved) in ID Stage (stage2)(resolved) in ID Stage (stage2)

(In  Appendix A and 350)

Branch resolved in stage 2 (ID)
Branch Penalty = 2 - 1 = 1 cycle

IF

ID

EX MEM WB

Pipeline Version 3 (in 350):   With Forwarding, Branch resolved in ID stage 

Stage 1

Stage 2

Stage 3 Stage 4 Stage 5

Branch Target ALU

Compare
Branch
Registers 
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CompileCompile--Time Reduction of Branch PenaltiesTime Reduction of Branch Penalties

• One scheme discussed earlier is to flush or freeze the pipeline by 
whenever a conditional branch is decoded by holding or deleting any 
instructions in the pipeline until the branch destination is known 
(zero pipeline registers, control lines).

• Another method is to predict that the branch is not taken where the 
state of the machine is not changed until the branch outcome is 
definitely known.  Execution here continues with the next 
instruction; stall occurs here when the branch is taken.

• Another method is to predict that the branch is taken and begin 
fetching and executing at the target; stall occurs here if the branch is 
not taken. (harder to implement more on this later).

• Delayed Branch: An instruction following the branch in a branch 
delay slot is executed whether the branch is taken or not (part of the 
ISA).

How to handle branches in a pipelined CPU?

Most
Common

1

2

3

(or assume)

i.e always stall on a branch

Supported by all RISC ISAs

i.e PC+4

(or assume)



CMPE550 CMPE550 -- ShaabanShaaban
#34   Lec # 2   Fall  2017   9-5-2017

Predict Branch NotPredict Branch Not--Taken SchemeTaken Scheme

Pipeline stall cycles from branches  =  frequency of taken branches X  branch penalty

Stall

Not Taken Branch  (no stall)

Taken  Branch (stall)

Stall when the branch is taken

(most common scheme)

Assuming the MIPS pipeline with reduced branch penalty = 1

CPI = 1 + stall clock cycles per instruction

i.e Pipeline Version 3

(or assume)
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Pipeline Performance ExamplePipeline Performance Example
• Assume the following MIPS instruction mix:

• What is the resulting CPI for the pipelined MIPS with 
forwarding and branch address calculation in ID stage 
when using a branch not-taken scheme?

• CPI  = Ideal CPI  +  Pipeline stall clock cycles per instruction
=          1    +              stalls by loads   +    stalls by branches
=           1   +                 .3 x .25 x 1    +            .2 x .45 x 1
=           1   +                 .075            +              .09        
=        1.165

Type Frequency
Arith/Logic 40%
Load 30%         of which 25% are followed immediately by 

an instruction using the loaded value 
Store 10%
branch 20%         of which 45% are taken

Branch Penalty = 1 cycle

i.e Pipeline
Version 3

1 stall

1 stall
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Static Compiler Branch PredictionStatic Compiler Branch Prediction
• Static Branch prediction encoded in branch instructions using 

one prediction bit = 0  = Not Taken,   = 1 = Taken
– Must be supported by ISA, Ex:   HP PA-RISC, PowerPC, UltraSPARC

• Two basic methods exist to statically predict branches at compile 
time:

1 By examination of program behavior and the use of 
information collected from earlier runs of the program.

– For example, a program profile may show that most forward 
branches and backward branches (often forming loops) are 
taken.  The simplest scheme in this case is to just predict the 
branch as taken.

2 To predict branches on the basis of branch direction,  
choosing backward branches as taken and forward   
branches as not taken.

Static = By the compiler         Dynamic =  By hardware in the CPU

XBranch Encoding X = Static Prediction bit  
X= 0  Not Taken    X = 1 Taken

Program profile-based static branch prediction

How?

Loop?
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Profile-Based Compiler Branch 
Misprediction  Rates for SPEC92

Floating PointInteger

More Loops

Static Branch Prediction Performance:

Average 9%Average 15%

(FP has more loops)
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ISA Reduction of Branch Penalties:ISA Reduction of Branch Penalties:
Delayed Branch (action)Delayed Branch (action)

• When delayed branch is used,  the branch is delayed by  n  cycles, 
following this execution pattern:

conditional branch instruction
sequential successor1
sequential successor2

……..
sequential successorn
branch target if taken

• The sequential successor instruction are said to be  in the branch 
delay slots.   These instructions are executed whether or not the 
branch is taken.

• In Practice, all machines that utilize delayed branching have 
a single instruction delay slot.  (All RISC ISAs)

• The job of the compiler is to make the successor instruction 
in the delay slot a valid  and useful instruction.

n branch potential action delay slots}Program
Order

These instructions in branch delay slots are 
always executed regardless of branch direction

i.e. ISA Support Needed
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Delayed Branch ExampleDelayed Branch Example

Single Branch Delay Slot Used
Assuming branch penalty = 1 cycle

Not Taken Branch  (no stall)

Taken  Branch (no stall)

All RISC ISAs

i.e. Pipeline Version # 3
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Delayed BranchDelayed Branch--delay Slot Scheduling Strategiesdelay Slot Scheduling Strategies
The branch-delay slot instruction can be chosen from 
three cases:

A An independent  instruction from before the branch:
Always  improves performance when used.  The branch  
must not depend on the rescheduled instruction.

B An instruction from the target of the branch:
Improves performance if the branch is taken and may require
instruction duplication.   This instruction must be safe to execute if the 
branch is not taken.   

C An instruction from the fall through instruction stream:
Improves performance when the branch is not taken.   The instruction 
must be safe to execute when the branch is taken.

The performance and usability of cases  B, C is improved by using   
a canceling or nullifying branch.

Most Common

Hard
to
Find

e.g  From Body of a loop
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(A) (B) (C)

(In  Appendix A)

Example:
From the 
body of a loop

Most Common
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BranchBranch--delay Slot: Canceling Branchesdelay Slot: Canceling Branches
• In a canceling branch, a static compiler branch direction 

prediction is included with the branch-delay slot 
instruction.

• When the branch goes as predicted, the instruction in the 
branch delay slot is executed normally.

• When the branch does not go as predicted the instruction 
is turned into a no-op (i.e. cancelled).

• Canceling branches eliminate the conditions on 
instruction selection in delay instruction strategies  B,  C

• The effectiveness of this method depends on whether we 
predict the branch correctly.

XBranch Encoding X = Static Prediction bit  
X= 0  Not Taken    X = 1 Taken

(AKA Canceling Delayed Branch Action Slot)

Why?
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Branch Predicted Taken By Compiler

Cancelled
Stall or No-OP

Normal
No Stall

Branch Goes Not As Predicted

Branch Goes As Predicted

Canceling Branch Example – Predicted Taken

Pipeline Version # 3 Assumed Here
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Performance Using Canceling  Delay BranchesPerformance Using Canceling  Delay Branches

70% Static Prediction Accuracy

MIPS
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• Implements MIPS64 but uses an 8-stage pipeline instead of the classic 5-
stage pipeline to achieve a higher clock speed.

• Pipeline Stages:
– IF:  First half of instruction fetch. Start instruction cache access.
– IS: Second half of instruction fetch. Complete instruction cache access.
– RF:  Instruction decode and register fetch, hazard checking.
– EX:  Execution  including branch-target and condition evaluation.
– DF: Data fetch, first half of data cache access. Data available if a hit.
– DS: Second half of data fetch access. Complete data cache access.  Data available if a 

cache hit
– TC:  Tag check, determine data cache access hit.
– WB:  Write back for loads and register-register operations.

– Branch resolved in stage 4.  Branch Penalty = 3 cycles if taken   ( 2 with 
branch delay slot)

The MIPS R4000 Integer PipelineThe MIPS R4000 Integer Pipeline

(In  Appendix A)

1                    2                   3                   4  5                  6                    7  8

Branch resolved here in stage 4 Thus branch penalty = 4-1 = 3 cycles 
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MIPS R4000 ExampleMIPS R4000 Example

• Even with forwarding the deeper pipeline leads to            
a 2-cycle load delay (2 stall cycles).

(In  Appendix A)

LW data available here

Forwarding of LW Data

As opposed to 1-cycle in classic 5-stage pipeline

Deeper Pipelines = More Stall Cycles and Higher CPI
Pr

og
ra

m
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er

T =  I  x  CPI   x C
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Pipelining and Handling of ExceptionsPipelining and Handling of Exceptions
• Exceptions are events that usually occur  in normal program execution 

where the normal execution order of the instructions is changed (often 
called: interrupts, faults).

• Types of exceptions include:

• I/O device request    
• Invoking an operating system service
• Tracing instruction execution
• Breakpoint (programmer-requested interrupt).
• Integer overflow or underflow
• FP anomaly
• Page fault (not in main memory)
• Misaligned memory access
• Memory protection violation
• Undefined instruction
• Hardware malfunctions
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Characteristics of ExceptionsCharacteristics of Exceptions
• Synchronous vs.  asynchronous:   

Synchronous:  occurs at the same place with the same data and  memory allocation
Asynchronous:  Caused by devices external to the processor and memory.

• User requested vs. coerced:
User requested: The user task requests the event.
Coerced: Caused by some hardware event.

• User maskable  vs.  user nonmaskable:
User maskable: Can be disabled by the user task using a mask.

• Within  vs.  between instructions:
Whether it prevents instruction completion by happening in the  middle of execution.

• Resuming  vs. terminating:
Terminating: The program execution always stops after the event.
Resuming: the program continues after the event.  The state of the pipeline must be 
saved to handle this type of exception.  The pipeline is restartable in this case.
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Handling of Resuming ExceptionsHandling of Resuming Exceptions
• A resuming exception (e.g. a virtual memory page fault) usually 

requires the intervention of the operating system.

• The pipeline must be safely shut down and its state saved for 
the execution to resume after the exception is handled as 
follows:

1 Force a trap instruction into the pipeline on the next IF.

2 Turn of all writes for the faulting instruction and all 
instructions in the pipeline. Place zeroes into pipeline latches
starting with the instruction that caused the fault to prevent 
state changes.

3 The exception handling routine of the operating system 
saves the PC of the faulting instruction and other state data 
to be used to return from the exception.

(following)

To handle the exception 

i.e save program state

is invoked
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Precise Exception HandlingPrecise Exception Handling
• When using delayed branches, as many PCs as the the 

length of the branch delay plus one need to be saved and 
restored to restore the state of the machine.

• After the exception has been handled special instructions 
are needed to return the machine to the state before the 
exception occurred (RFE, Return to User code in MIPS).

• Precise exceptions and handling imply that a pipeline is 
stopped so the instructions just before the faulting 
instruction are completed and and those after it can be 
restarted from scratch. 

• Machines with arithmetic trap handlers and demand 
paging must support precise exceptions.

After handling the exception (i.e. As if processor is not pipelined)

i.e Precise exception handling imply handling  exceptions 
as if the processor is not pipelines

Exception Handling Issues:Exception Handling Issues:



CMPE550 CMPE550 -- ShaabanShaaban
#51   Lec # 2   Fall  2017   9-5-2017

Exceptions in MIPS Integer PipelineExceptions in MIPS Integer Pipeline
• The following represent problem exceptions for the MIPS 

5 pipeline stages:
IF         Page fault on instruction fetch; misaligned memory access;    

memory-protection violation.
ID         Undefined or illegal opcode
EX         Arithmetic exception
MEM     Page fault on data fetch; misaligned memory access;

memory-protection violation
WB        None

• Example:    LD         IF       ID        EX          MEM       WB
DADD                 IF        ID        EX             MEM      WB 

can cause a data page fault and an arithmetic exception at the same 
time ( LD in MEM and DADD in EX)      
Handled by dealing with data page fault and then restarting execution, 
then the second exception will occur but not the first.

i.e handle exceptions in program order one at a time
(as if processor is not pipelined)

Pr
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Precise Exception Handling in MIPSPrecise Exception Handling in MIPS
(i.e MIPS Integer Single(i.e MIPS Integer Single--Issue InIssue In--Order Pipeline)Order Pipeline)

• The instruction pipeline is required to handle exceptions of 
instruction  i before those of instruction  i+1

• The hardware posts all exceptions caused by an instruction in a 
status vector associated with the instruction which is carried 
along with the instruction as it goes through the pipeline.

• Once an exception indication is set in the vector, any control 
signals that cause a data value write is turned off.

• When an instruction enters WB the vector is checked, if any 
exceptions are posted, they are handled in the order they would 
be handled in an unpipelined machine.

• Any action taken in earlier pipeline stages is invalid but cannot 
change the state of the machine since writes where disabled.

For the following instructions

i.e in program order

1

2

3

i.e in program orderHow?

i.e by later instructions in program order
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Floating Point/Multicycle Pipelining in MIPSFloating Point/Multicycle Pipelining in MIPS
• Completion of MIPS EX stage floating point arithmetic operations in one 

or two cycles is impractical since it requires:
• A much longer CPU clock cycle, and/or
• An enormous amount of logic.

• Instead, the floating-point pipeline will allow for a longer latency (more 
EX cycles than 1). 

• Floating-point operations have the same pipeline stages as the integer 
instructions with the following differences:

– The EX cycle may be repeated as many times as needed (more than 1 cycle).

– There may be multiple floating-point functional units.
– A stall will occur if the instruction to be issued either causes a structural 

hazard for the functional unit or cause a data hazard.

• The latency of functional units is defined as the number of intervening 
cycles between an instruction producing the result and the instruction 
that uses the result (usually equals stall cycles with forwarding used).

• The initiation or repeat interval is the number of cycles that must elapse 
between issuing an instruction of a given type.

(In  Appendix A)

Solution:

to the same functional unit

(Stall?)
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Extending The MIPS PipelineExtending The MIPS Pipeline
to Handle Floatingto Handle Floating--Point Point 
Operations:Operations:

Adding NonAdding Non--PipelinedPipelined
Floating Point UnitsFloating Point Units

(In  Appendix A)

The MIPS pipeline with three additional unpipelined, floating-point functional units 
(FP FUs)
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Extending The MIPS Pipeline:Extending The MIPS Pipeline:
Multiple Outstanding Floating Point OperationsMultiple Outstanding Floating Point Operations

Latency = 0
Initiation Interval = 1

Latency = 3
Initiation Interval = 1
Pipelined

Latency = 6
Initiation Interval = 1
Pipelined

Latency = 24
Initiation Interval = 25
Non-pipelined

Integer Unit

Floating Point (FP)/Integer Multiply

FP/Integer Divider

IF ID WBMEM
FP Adder

EX

Hazards:
RAW, WAW  possible
WAR  Not Possible
Structural:  Possible
Control:  Possible

(In  Appendix A)

In-Order Single-Issue MIPS Pipeline with FP Support
Pipelined CPU with pipelined FP units = Super-pipelined CPU

Super-pipelined CPU:
A pipelined CPU with
pipelined FP units

In-Order = Start of instruction execution
done in program order
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Latencies and Initiation Intervals For Latencies and Initiation Intervals For 
Functional Units (FUs)Functional Units (FUs)

Functional Unit Latency Initiation Interval

Integer ALU 0 1

Data Memory 1 1
(Integer and FP Loads)

FP add 3 1

FP multiply 6 1
(also integer multiply)

FP divide 24 25
(also integer divide)

Latency usually equals stall cycles when  full forwarding is used

(In  Appendix A)

Shown in last slide

Not Pipelined
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Pipeline Characteristics With FP SupportPipeline Characteristics With FP Support
• Instructions are still processed in-order in IF, ID, EX at the 

rate of one instruction per cycle.
• Longer RAW hazard stalls likely due to long FP latencies.
• Structural hazards possible due to varying instruction times 

and FP latencies: 
– FP unit may not be available (not pipelined?) ; divide in this 

case.
– MEM, WB reached by several instructions simultaneously.

• WAW hazards can occur since it is possible for instructions 
to reach WB out-of-order.

• WAR hazards impossible, since register reads occur in-
order in ID.

• Instructions can be allowed to complete out-of-order
requiring special measures to enforce precise exceptions. 

(In  Appendix A)

Provided no WAW hazard resultsi.e Before a following instruction 
overwrites value

Order = Program order
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FP Operations Pipeline Timing ExampleFP Operations Pipeline Timing Example

IF ID A1 A4A3A2 MEM WB

IF ID M1 M6 M7M2 M3 M4 M5 MEM WB

IF ID MEMEX WB

IF ID MEMEX WB

MUL.D

L.D

ADD.D

S.D

CC 1 CC 2 CC 3 CC 8 CC 9CC 4 CC 5 CC 6 CC 7 CC 10 CC 11

(In  Appendix A)

When run on In-Order Single-Issue MIPS Pipeline with FP Support
With FU latencies/initiation intervals given in slides 54-55

Example illustrating 
that instructions can 
reach WB stage and 
Complete Out of order
(i.e out of program order). 
Thus Write-After-Write 
(WAW) hazards can 
occur in this pipeline

All above instructions are assumed independent
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Potential WAW Hazard Example

FP Multiply = 7 EX cycles    FP ADD = 4 EX Cycles
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FP Code RAW Hazard Stalls ExampleFP Code RAW Hazard Stalls Example
(with full data forwarding in place)(with full data forwarding in place)

IF MEMID EX WB

IF ID M1 M6 M7M2 M3 M4 M5 MEM WB

IF ID A1 A4A3A2 MEM WB

CC 1 CC 2 CC 3 CC 8 CC 9CC 4 CC 5 CC 6 CC 7 CC 10 CC 11     CC12    CC13   CC14     CC15  CC16  CC17     CC18    

IF ID MEMEX WB

STALL

STALL STALL STALL STALLSTALL STALL STALL

STALL STALLSTALL STALL STALL STALL STALL STALL STALL

L.D F4, 0(R2)

MUL.D F0, F4, F6

ADD.D F2, F0, F8

S.D F2, 0(R2)

Third stall due
to structural hazard 
in MEM stage

6 stall cycles which equals latency of FP multiply functional unit

(In  Appendix A)

When run on In-Order Single-Issue MIPS Pipeline with FP Support
With FP latencies/initiation intervals given in slides 54-55
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As indicated in slides 54-55: FP Multiply Functional Unit has 7 EX cycles (and 6 cycle latency 6 = 7-1) 
FP Add Functional Unit has 4 EX cycles (and 3 cycle latency 3 = 4-1) 
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FP Code Structural  Hazards ExampleFP Code Structural  Hazards Example

IF ID A1 A4A3A2 MEM WB

IF ID M1 M6 M7M2 M3 M4 M5 MEM WB

IF ID MEMEX WB

IF ID MEMEX WB

MULTD  F0, F4, F6

LD  F2, 0(R2)

ADDD  F2, F4, F6

CC 1 CC 2 CC 3 CC 8 CC 9CC 4 CC 5 CC 6 CC 7 CC 10 CC 11

IF ID MEMEX WB

IF ID MEMEX WB

IF ID MEMEX WB

.  .   .   (integer)

.  .   .   (integer)

.  .   .   (integer)

.  .   .   (integer)

When run on In-Order Single-Issue MIPS Pipeline with FP Support
With FP latencies/initiation intervals given in slides 54-55
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Maintaining Maintaining Precise ExceptionsPrecise Exceptions in Multicycle Pipeliningin Multicycle Pipelining
• In the MIPS code segment:         DIV.D    F0, F2, F4

ADD.D  F10, F10, F8
SUB.D   F12, F12, F14

• The ADD.D, SUB.D instructions can complete before DIV.D is completed 
causing out-of-order execution completion.

• If DIV.D causes a floating-point arithmetic exception, precise exception 
handling is harder since both ADD.D, SUB.D have already completed.

• Four approaches have been proposed to remedy this type of  situation:
1 Ignore the problem and settle for imprecise exception.
2 Buffer the results of the operation until all the operations issues 

earlier are done.  (large buffers, multiplexers, comparators)
3 A history file keeps track of the original values of registers 

(CYBER180/190, VAX)
4 A Future file keeps the newer value of a register; when all earlier 

instructions have completed the main register file is updated from the 
future file.  On an exception the main register file has the precise 
values for the interrupted state.

(In  Appendix A)

e.g Stall WB

Exception Generated

Already Done

Used to restore original register values if needed

i.e Force in-order com
pletion

i.e. with FP support


