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Scalable Cache Coherent Systems
• Scalable distributed shared memory machines Assumptions: 

– Processor-Cache-Memory nodes connected by scalable network.
– Distributed shared physical address space.
– Communication assist (CA) must interpret network transactions, 

forming shared address space.
• For such a system with distributed shared physical address space:

– A cache miss must be satisfied transparently from local or remote
memory depending on address.

– By its normal operation, cache replicates data locally resulting in          
a potential cache coherence problem between local and remote copies 
of data.

– Thus: A coherency solution must be in place for correct operation.

• Standard bus-snooping protocols studied earlier do not apply for lack 
of a bus or a broadcast medium to snoop on.

• For this type of system to be scalable, in addition to network latency
and bandwidth scalability, the cache coherence protocol or solution 
used must also scale as well.

PCA Chapter 8

Hardware-supported SAS

NUMA
SAS
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Functionality Expected In A Cache Coherent System
• Provide a set of states, a state transition diagram, and 

actions representing the cache coherence protocol used.
• Manage coherence protocol:

(0)  Determine when to invoke the coherence protocol
(a)  Find source of information about state of cache line in other caches

• Whether need to communicate with other cached copies
(b)  Find out the location or locations of other (shared) copies if any.
(c)  Communicate with those copies  (invalidate/update).

• (0) is done the same way on all cache coherent systems:
– State of the local cache line is maintained in the cache.
– Protocol is invoked if an “access fault” occurs on the cache 

block or line.

• Different approaches are distinguished by (a) to ( c ).

Action

1 2

3
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Bus-Based Coherence
• All of (a), (b), (c) done through broadcast on the bus:

– Faulting processor sends out a “search”. 
– Others respond to the search probe and take necessary 

action.
• This approach could be done in a scalable network too:

– Broadcast to all processors, and let them respond over 
network.

– Conceptually simple, but broadcast doesn’t scale with p:
• On a scalable network (e.g MINs), every fault may lead to at 

least  p network transactions.

(a)  Find source of information about state of cache line in other caches
•Whether need to communicate with other cached copies

(b)  Find out the location or locations of other (shared) copies if any.
(c)  Communicate with those copies  (invalidate/update).

p = Number of processors

in general

Over busi.e Processor
that intends 

to modify
a cache block

e.g. invalidate their local copies
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Scalable Cache Coherence
• A scalable cache coherence approach may have similar 

cache line states and state transition diagrams as in 
bus-based coherence protocols.

• However, different additional mechanisms other than 
broadcasting must be devised to manage the coherence 
protocol.

Three possible approaches:

– Approach #1: Hierarchical Snooping.
– Approach #2: Directory-based cache coherence.
– Approach #3: A combination of the above two 

approaches. 

i.e to meet coherence functionality requirements a-c
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Approach #1: Hierarchical Snooping
• Extend snooping approach: A hierarchy of broadcast media:

– Tree of buses or rings (KSR-1).
– Processors are in the bus- or ring-based multiprocessors at the 

leaves.
– Parents and children connected by two-way snooping interfaces:

• Snoop both buses and propagate relevant transactions.
– Main memory may be centralized at root or distributed among 

leaves.
• Issues (a) - (c) handled similarly to bus, but not full broadcast. 

– Faulting processor sends out “search” bus transaction on its bus.
– Propagates up and down hierarchy based on snoop results.

• Problems: 
– High latency: multiple levels, and snoop/lookup at every level.
– Bandwidth bottleneck at root.

• This approach has, for the most part, been abandoned.
(a)  Find source of information about state of cache line in other caches

•Whether need to communicate with other cached copies
(b)  Find out the location or locations of other (shared) copies if any.
(c)  Communicate with those copies  (invalidate/update).

Does not scale well
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Hierarchical Snoopy Cache Coherence
Simplest way: hierarchy of buses; snoop-based coherence at each level.

– or rings.
• Consider buses. Two possibilities:

(a) All main memory at the global (B2) bus.
(b) Main memory distributed among the clusters of SMP nodes.

(a) (b)

P P

L1 L1

L2
B1

P P

L1 L1

L2
B1

B2

Main Memory ( Mp)

P P

L2

L1 L1

B1

Memory

P P

L1 L1

B1

L2
Memory

B2

UMA NUMA

UMA

NUMA

Centralized Main Memory
(Does not scale well)

Distributed Main Memory



CMPE655 - Shaaban
#7 lec # 11   Fall 2015   12-1-2015

Bus Hierarchies with Centralized Memory

B1 follows standard snoopy protocol.
Need a monitor per B1 bus: 

– Decides what transactions to pass back and forth between buses.
– Acts as a filter to reduce bandwidth needs.

Use L2 (or L3) cache:
• Much larger than L1 caches (set associative).   Must maintain 

inclusion.
• Has dirty-but-stale bit per line.
• L2 (or L3) cache can be DRAM based, since fewer references get to it.

P P

L1 L1

L2
B1

P P

L1 L1

L2
B1

B2

Main Memory ( Mp)

Or L3Or L3

CMP?
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Bus Hierarchies with Centralized Memory
Advantages and Disadvantages

• Advantages:
– Simple extension of bus-based scheme.
– Misses to main memory require single traversal to root of hierarchy.
– Placement of shared data is not an issue.

• One centralized memory

• Disadvantages:
– Misses to local data also traverse hierarchy.

– Higher traffic and latency.

– Memory at global bus must be highly interleaved for bandwidth.
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Bus Hierarchies with Distributed Memory

• Main memory distributed among clusters of SMP nodes.
• Cluster is a full-fledged bus-based machine, memory and all.
• Automatic scaling of memory (each cluster brings some with it).
•  Good placement can reduce global bus traffic and latency.

• But latency to far-away memory is larger. (NUMA)

P P

L2

L1 L1

B1

Memory

P P

L1 L1

B1

L2
Memory

B2

CMP?

As expected in NUMA systems

System bus or coherent point-to-point link (e.g. coherent HyperTransport, or QPI)

Or L3
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• A directory is composed of a number of directory entries.
• Every memory block has an associated directory entry:

– Keeps track of the nodes or processors that have cached copies of 
the memory block and their states.

– On a miss (0) invoke coherence protocol, (a) find directory entry, 
(b) look it up, and  (c) communicate only with the nodes that 
have copies if necessary.

– In scalable networks, communication with directory and nodes 
that have copies is through network transactions.

• A number of alternatives exist for organizing directory information.

Scalable Approach #2: Directories

P0        P1     P2    ….    Pi       ….  PN-1 

A possible Directory Entry (Memory-based Full-map or Full Bit Vector Type):

Presence Bits
Pi = 1   if processor i has a copy

Dirty Bit

If Dirty = 1
then only one Pi = 1
(Pi  is owner of block)One presence bit per processor          Dirty

One entry per memory block

Next

Directory
Functionality
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Organizing Directories

Centralized Distributed

HierarchicalFlat

Memory-based Cache-based
(chained directories)

Directory Schemes

How to find source of
directory information

How to locate copies

Full-Map
(Full Bit Vector)

Limited 
Directory Singly Linked

chain
Doubly Linked
chain

e.g  SGI Origin, Stanford DASH e.g  IEEE Scalable Coherent 
Interface (SCI) , Sequent NUMA-Q

Both memory and directory are centralized.  
Does not scale well.

Both memory and directories are distributed.
Directory entry co-located with memory 
block itself at its home node

(a)

(b)

Used in UMA SAS

Used in scalable
NUMA SAS
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Basic Operation of Centralized Directory
•  Both memory and directory are 

centralized.
• P processors.  
• Assuming write-back, write invalidate.
•  With each cache-block in memory: P  

presence-bits p[i], 1 dirty-bit.
•  With each cache-block in cache:          

1 valid bit, and 1 dirty (owner) bit.
• Dirty bit on -->  only one p[i] on

• ••

P P

Cache Cache

Memory Directory

presence bits dirty bit

Interconnection Network

• Read from main memory (read miss) by processor i:
• If dirty-bit OFF then { read from main memory; turn p[i] ON; }
• if dirty-bit ON   then { recall line from dirty proc j (cache state to shared); update 

memory; turn dirty-bit OFF; turn p[i] ON; supply recalled data to i;}
• Write miss to main memory by processor i:

• If dirty-bit OFF then { supply data to i; send invalidations to all caches that have 
the block; turn dirty-bit ON; turn p[i] ON; ... }

• if dirty-bit ON   then { recall line from dirty proc (with p[j] on); update memory; 
block state on proc j invalid ; turn p[i] ON; supply recalled data to i;}

P0        P1     P2    ….    Pi       ….  PN-1 

Directory Entry Per Memory Block

Presence Bits
(one per processor) Dirty Bit

Forced write back

No longer block owner

Does not scale well.

Full Map
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Distributed, Flat, 
Memory-based Schemes

• All info about copies of a memory blocks co-located with                                          
block itself at home node (directory node of block).

– Works just like centralized scheme, except distributed.
• Scaling of performance characteristics:

– Traffic on a write: proportional to number of sharers.
– Latency on a write: Can issue invalidations to sharers in parallel.

• Scaling of storage overhead:
– Simplest representation: Full-Map ( full bit vector), i.e. one presence bit per 

node:  P  presence bits, 1 dirty bit per block directory entry.
– Storage overhead doesn’t scale well with P;  a 64-byte cache line implies:

• 64 nodes:   65/(64 x 8)  =  12.7% overhead.
• 256 nodes: 50% overhead.; 1024 nodes: 200% overhead.

– For M memory blocks in memory, storage overhead is proportional to  P*M
• Examples:  SGI Origin, Stanford DASH.

P

M

M = Total Number of Memory Blocks

P0        P1     P2    ….    Pi       ….  PN-1 

Directory Entry Per Memory Block

Presence Bits
(one per processor) Dirty Bit

P= N  = Number of Processors

Full Map Entry
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Basic Operation of Distributed, Flat, 
Memory-based Directory

P

A M/D

C

P

A M/D

C

P

A M/D

C

Read request
to directory

Reply with
owner identity

Read req.
to owner

Data
Reply

Revision message
to directory

1.

2.

3.

4a.

4b.

P

A M/D
C

P

A M/D
C

P

A M/D

C

RdEx request
to directory

Reply with
sharers identity

Inval. req.
to sharer

1.

2.

P

A M/D

C

Inval. req.
to sharer

Inval. ack Inval. ack

3a. 3b.

4a. 4b.

Requestor

Node with
dirtycopy

Directory node
for block

Requestor

Directorynode

Sharer Sharer

(a) Read miss to a block in dirty state (b) Write miss to a block with two sharers

Assuming: Write back, write invalidate

(a) Find source of info (home node directory)
(b) Get directory info (entry) from home node (e.g owner, sharers)
(c) Protocol actions: Communicate with other nodes as needed

(a) (a)

(b)
(b)

Read miss to a block in dirty state Write miss to a block with two sharers

Update directory entry

(c)

(c)

(c)

(c)

(c)

(c)
(c)

Requesting
node

Requesting 
node

(One owner)

Home node 
of block

Home node 
of block

Owner
of block
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Reducing Storage Overhead of Distributed 
Memory-based Directories

• Optimizations for full bit vector schemes:
– Increase cache block size (reduces storage overhead proportionally)
– Use multiprocessor (SMP) nodes (one presence bit per multiprocessor node, not per 

processor)
– still scales as P*M, but not a problem for all but very large machines

• 256-processors, 4 per node, 128 Byte block :  6.25% overhead.
• Limited Directories: Addressing entry width P

– Observation: most blocks cached by only few nodes.
– Don’t have a bit per node, but directory entry contains a few pointers to sharing 

nodes (each pointer has log2 P bits,  e.g  P=1024 => 10 bit pointers). 
– Sharing patterns indicate a few pointers should suffice (five or so)
– Need an overflow strategy when there are more sharers.
– Storage requirements:  O(M log2 P).

• Reducing “height”: addressing the M term
– Observation: number of memory blocks >> number of cache blocks
– Most directory entries are useless at any given time
– Organize directory as a cache, rather than having one entry per memory block.

(Full Map)
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Distributed, Flat, Cache-based Schemes
• How they work:

• Memory block at home node only holds pointer to rest of directory 
info (start of chain or linked list of sharers).

• Distributed linked list of copies, weaves through caches:
• Cache tag has pointer, points to next cache with a copy (sharer).

• On read, add yourself to head of the list.
• On write, propagate chain of invalidations down the list.

P

Cache

P

Cache

P

Cache

Main Memory
(Home)

Node 0 Node 1 Node 2

• Utilized in Scalable Coherent Interface (SCI) IEEE Standard: 
• Uses a doubly-linked list.

Doubly-linked List/Chain

Singly-linked chain
also possible but slower

Home Node of Block

Used in Dolphin Interconnects
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Scaling Properties of Cache-based Schemes

• Traffic on write: proportional to number of sharers.
• Latency on write: proportional to number of sharers.

– Don’t know identity of next sharer until reach current one
– also assist processing at each node along the way.
– (even reads involve more than one other communication 

assist: home and first sharer on list)
• Storage overhead: quite good scaling along both axes

– Only one head pointer per memory block
• rest of storage overhead is proportional to cache size.

• Other properties: 
– Good: mature, IEEE Standard (SCI), fairness.
– Bad: complex.

Not total number of memory blocks, M
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Distributed Hierarchical Directories
• Directory is a hierarchical data structure:

– Leaves are processing nodes, internal nodes just directories.
– Logical hierarchy, not necessarily physical (can be embedded in 

general network).
• Potential bandwidth bottleneck at root.

processing nodes

level-1 directory

level-2 directory

(Tracks which of its children
processing nodes have a copy
of the memory block. Also tracks
which local memory blocks are
cached outside this subtree.
Inclusion is maintained between
processor caches and directory.)(Tracks which of its children

level-1 directories have a copy
of the memory block. Also tracks
which local memory blocks are
cached outside this subtree.
Inclusion is maintained between
level-1 directories and level-2 directory.)

Operation:
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How to Find Directory Information
• Centralized memory and directory: - Easy: go to it

– But not scalable.
• Distributed memory and directory:

– Flat schemes:
• Directory distributed with memory: at the cache block home node.
• Location based on address: network transaction sent directly to 

home.
– Hierarchical schemes:

• Directory organized as a hierarchical data structure.
• Leaves are processing nodes, internal nodes have only directory 

state.
• Node’s directory entry for a block says whether each subtree caches 

the block
• To find directory info, send “search” message up to parent

– Routes itself through directory lookups.
• Similar to hierarchical snooping, but point-to-point messages are 

sent between children and parents.

(a) Find source of info (e.g. home node directory)
(b) Get directory information (e.g owner, sharers)
(c) Protocol actions: Communicate with other nodes as needed

(a)
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How Is Location of Copies Stored?
• Hierarchical Schemes:

– Through the hierarchy.
– Each directory has presence bits for its children (subtrees), and dirty bit.

• Flat Schemes:
– Varies a lot (memory-based vs.  Cache-based).
– Different storage overheads and performance characteristics.

– Memory-based schemes:
• Info about copies stored at the home node with the memory block.
• Examples: Dash, Alewife , SGI Origin, Flash.

– Cache-based schemes:
• Info about copies distributed among copies themselves.

– Via linked list: Each copy  points to next.
• Example: Scalable Coherent Interface (SCI, an IEEE standard).

(a) Find source of info (e.g. home node directory)
(b) Get directory information (e.g owner, sharers)
(c) Protocol actions: Communicate with other nodes as needed

(b)
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Summary of Directory Organizations
Flat Schemes:
• Issue (a): finding source of directory data:

– Go to home node, based on address.

• Issue (b): finding out where the copies are.
– Memory-based: all info is in directory at home node .
– Cache-based: home has pointer to first element of distributed linked list.

• Issue (c): communicating with those copies.
– Memory-based: point-to-point messages.

• Can be multicast or overlapped.
– Cache-based: part of point-to-point linked list traversal  to find them.

• Serialized.

Hierarchical Schemes:
– All three issues through sending messages up and down tree.
– No single explicit list of sharers.
– Only direct communication is between parents and children.
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Summary of Directory Approaches
• Directories offer scalable coherence on general networks.

– No need for broadcast media.
• Many possibilities for organizing directories and managing 

protocols.
• Hierarchical directories not used much.

– High latency, many network transactions, and bandwidth 
bottleneck at root.

• Both memory-based and cache-based distributed flat 
schemes are alive:
– For memory-based, full bit vector suffices for moderate scale.

• Measured in nodes visible to directory protocol, not processors.
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Approach #3:  A Popular Middle Ground
Two-level “Hierarchy”

• Individual nodes are multiprocessors, connected non-
hierarchically.
– e.g. mesh of SMPs.

• Coherence across nodes is directory-based.
– Directory keeps track of nodes, not individual processors.

• Coherence within nodes is snooping or directory.
– Orthogonal, but needs a good interface of functionality.

• Examples:
– Convex Exemplar: directory-directory.
– Sequent, Data General, HAL: directory-snoopy.

SMP= Symmetric Multiprocessor Node  

Example

e.g. Snooping  +  Directory
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Example Two-level Hierarchies
P

C

Snooping 

B1

B2

P

C

P

C
B1

P

C

Main
Mem

Main
Mem

Adapter
Snooping
Adapter

P

C
B1

Bus (or Ring)

P

C

P

C
B1

P

C

Main
Mem

Main
Mem

Network

Assist Assist

Network2

P

C

AM/D

Network1

P

C

AM/D

Directory adapter

P

C

AM/D

Network1

P

C

AM/D

Directory adapter

P

C

AM/D

Network1

P

C

AM/D

Dir/Snoopy adapter

P

C

AM/D

Network1

P

C

AM/D

Dir/Snoopy adapter

(a) Snooping-snooping (b) Snooping-directory

Dir. Dir.

(c) Directory-directory (d) Directory-snooping

i.e 2-level Hierarchical Snooping
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Advantages of Multiprocessor Nodes
• Potential for cost and performance advantages:

– Amortization of node fixed costs over multiple processors
• Applies even if processors  simply packaged together but not 

coherent.
– Can use commodity SMPs.
– Less nodes for directory to keep track of.
– Much communication may be contained within node (cheaper).
– Nodes can prefetch data for each other (fewer “remote” misses).
– Combining of requests (like hierarchical, only two-level).
– Can even share caches (overlapping of working sets).
– Benefits depend on sharing pattern (and mapping):

• Good for widely read-shared: e.g. tree data in Barnes-Hut
• Good for nearest-neighbor, if properly mapped
• Not so good for all-to-all communication.

Than going the network

SMP= Symmetric Multiprocessor Node  

With good mapping/data allocation
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Disadvantages of Coherent MP Nodes
• Memory Bandwidth shared among processors in a node:

– Fix: Each processor has own memory (NUMA)
• Bus increases latency to local memory.

– Fix: Use point-to-point interconnects
(e.g HyperTransport).

• With local node coherence in place, a CPU typically must 
wait for local snoop results before sending remote 
requests.

• Bus snooping at remote nodes also increases delays there 
too, increasing latency and reducing bandwidth.

• Overall, may hurt performance if sharing patterns don’t 
comply with system architecture.

MP = Multiprocessor

Or crossbar-based SGI Origin 2000
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Non-Uniform Memory Access (NUMA) 
Example: AMD 8-way Opteron Server Node

Dedicated point-to-point interconnects (Coherent HyperTransport links) used  to 
connect processors alleviating the traditional limitations of FSB-based SMP systems 
(yet still providing the cache coherency support needed)
Each processor has two integrated DDR memory channel controllers:
memory bandwidth scales up with number of processors.
NUMA architecture since a processor can access its own memory at a lower latency 
than access to remote memory directly connected to other processors in the system. 

Total 16 processor cores when 
dual core Opteron processors used

Repeated here from lecture 1


