
EECC250 - ShaabanEECC250 - Shaaban
#1 lec #15 Winter 1-21-99

The Software Design ProcessThe Software Design Process
The design process of software for microprocessor

systems should incorporate the following 5 key

concepts:

• Top-Down Design:

• Modular Design

• Testability

• Recoverability

• Structured Programming

EECC250 - ShaabanEECC250 - Shaaban
#2 lec #15 Winter 1-21-99

Top-down DesignTop-down Design
• Programming by step-wise refinement; i.e., decompose a large

complex project or task into smaller, more manageable
components or subtasks.

• Iterative process that separates the goals of the program from
the methods of achieving them.

• Usually accompanied by bottom-up coding.

Task t

Subtask t2Subtask t1

Subtask t2,2Subtask t1,2Subtask t1,1 Subtask t2,1

Subtask t1,1,2Subtask t1,1,1 Subtask t2,2,2 Subtask t2,2,3Subtask t2,2,1

Main task (large)Main task (large)

Smaller tasks

EECC250 - ShaabanEECC250 - Shaaban
#3 lec #15 Winter 1-21-99

System SpecificationSystem Specification
• Before a system (software or hardware) can be designed,

it must be specified.

• A system specification provides the statement of the goals
that a system should achieve.

• The programmer should always validate the end product
against these goals.

• A tightly-specified system covering many possible cases is
usually more reliable than a loosely specified system.

• It may also be useful to specify "non-goals"; i.e., things
that the system is not required to do.

EECC250 - ShaabanEECC250 - Shaaban
#4 lec #15 Winter 1-21-99

Modular DesignModular Design
• A software module is concerned with a single,

logically coherent task.

• Modules can be "plugged into the system”
and can be supplied by different software
vendors .

• The internal operation of the module is not
significant; only its inputs and outputs.

• Modules can be tested separately from the
main system.

• Coupling indicates how information is shared
among modules. Strongly coupled modules
share common data which is generally
undesirable.

• The strength of a module is related to whether
or not it performs a single function. Strong
modules are easier to test and replace.

Module CodeModule Code
(i.e. program)(i.e. program)

Local Data Storage
(cannot be accessed
 outsides the module)

 ModuleModule

Single EntrySingle Entry
 Point Point

Single ExitSingle Exit
 Point Point

EECC250 - ShaabanEECC250 - Shaaban
#5 lec #15 Winter 1-21-99

TestabilityTestability
• Testing is done by examining the state of a system at various key points

in its lifetime. This can be implemented through the use of
breakpoints.

• Bottom-up testing:
– Involves testing the lowest-level components of a system first.
– Starts at the lowest level and keeps moving to higher levels.
– Complete when the highest level of the system has been tested.
– Requires writing a test driver for the component to be tested.

• Top-down testing:
– Involves testing the highest levels first.
– Helps to spot major design problems early.
– Does not require a test driver for components; but instead requires

stubs to represent the lower level modules.
• White Box versus Black Box testing:

– Black Box testing means that the inner workings are totally unknown;
thus, all possible inputs and outputs must be tested.

– White Box testing means that the inner workings are known; this
knowledge can be used to limit the amount of testing required.

EECC250 - ShaabanEECC250 - Shaaban
#6 lec #15 Winter 1-21-99

RecoverabilityRecoverability

• Recoverability or exception handling is the ability of
a system to cope with erroneous data and to recover
from certain classes of errors.

• A poor recovery mechanism may be worse than none
at all.

EECC250 - ShaabanEECC250 - Shaaban
#7 lec #15 Winter 1-21-99

Structured ProgrammingStructured Programming
• Purpose of structure programming:

• Improve programmer productivity;
• Make programs easier to read;
• Yield more reliable programs.

• All programs can be constructed from three fundamental
components:

– Sequence:
– A linear list of actions that are executed in order.

– Looping Mechanism:
– Permits a sequence to be carried out a number of times.

– Decision Mechanism:
– Allows one of two courses of action to be taken.

EECC250 - ShaabanEECC250 - Shaaban
#8 lec #15 Winter 1-21-99

The Conditional StructureThe Conditional Structure
For the purpose of the following, assume that 'L' is a logical condition
whose result 'B' is stored in register D0 and S, S1 and S2 are sequences.
*

* IF L THEN S

 TST.B D0 Test the lower-order byte of D0
 BEQ ENDIF If not true, then skip the sequence

 S

ENDIF ...

* IF L THEN S1 ELSE S2

*
 TST.B D0 Test the lower-order byte of D0

 BEQ ELSE If not ture, then proceed to the else sequence

 S1 Execute the S1 sequence
 BRA ENDIF Skip the else statement

ELSE S2 Execute the S2 sequence

ENDIF ...

EECC250 - ShaabanEECC250 - Shaaban
#9 lec #15 Winter 1-21-99

The CASE StatementThe CASE Statement
* CASE I OF
* I1: S1
* I2: S2
* ...
* In: Sn
*
 MOVE I,D0 Move the variable to D0 for testing
 CMP I1,D0 Check if it is I1
 BEQ ACT1
 CMP I2,D0 Check if it is I2
 BEQ ACT2
 ..
 CMP In,D0 Check if it is In
 BEQ ACTn
 BEQ ERROR
 ...
ACT1 S1 Execute the statement for I1
 BRA ENDCASE
ACT2 S2 Execute the statement for I2
 BRA ENDCASE
...
ACTn Sn Execute the statement for In
 BRA ENDCASE
ERROR Handle a value out of range

ENDCASE

EECC250 - ShaabanEECC250 - Shaaban
#10 lec #15 Winter 1-21-99

The CASE StatementThe CASE Statement
• If the conditions can be converted to a sequence of integer numbers, then the CASE

statement is more efficiently handled by a jump table:
CLR.L D0 Clear all bits of D0

 LEA JUMPTAB,A0 Store the address of the jump table
 MOVE I,D0 Move the variable to D0 for testing
 CMP I1,D0 Check the bottom of the range
 BLO ERROR Error if less the lowest value
 CMP In,D0 Check the top of the range
 BCS ERROR Error if higher than highest value
 SUB I1,D0 Get the offset from the first condition
 ASL.L #2,D0 Multiply by 4, addresses are long words
 MOVEA.L (A0,D0),A0 Get the address of the action
 JMP (A0) Jump to the appropriate action
 ...
JUMPTAB DC.L ACT1 First action
 DC.L ACT2 Second action
 ...
 DC.L ACTn N'th action
 ...
ACT1 S1 Execute the statement for I1
 BRA ENDCASE
ACT2 S2 Execute the statement for I2
 BRA ENDCASE
 ...
ACTn Sn Execute the statement for In
 BRA ENDCASE
ERROR Handle a value out of range
ENDCASE

EECC250 - ShaabanEECC250 - Shaaban
#11 lec #15 Winter 1-21-99

Looping MechanismsLooping Mechanisms
* FOR I = N1 TO N2 DO S
*
 MOVE.B #N1,D0 D0 is the loop counter
NEXT CMP.B #N2,D0 Check if the end of the loop
 BHI ENDLOOP Quit the loop if counter too high
 S Execute the sequence
 ADDQ #1,D0 Increment the loop counter
 BRA NEXT
ENDLOOP
*
* FOR I = N DOWNTO 0
*
 MOVE.W #N,D0 D0 is the loop counter
 BMI ENDLOOP Skip loop if less than 0
NEXT S Execute the sequence
 DBRA D0,NEXT Decrement D0 and loop back

EECC250 - ShaabanEECC250 - Shaaban
#12 lec #15 Winter 1-21-99

EECC250 - ShaabanEECC250 - Shaaban
#13 lec #15 Winter 1-21-99

DBF Dn,<label>
decrement Dn and branch if Dn has not reached -1

Some assemblers allow DBRA instead of DBF

EECC250 - ShaabanEECC250 - Shaaban
#14 lec #15 Winter 1-21-99

Looping MechanismsLooping Mechanisms
*
* WHILE L DO S

*
REPEAT TST.B D0 Test if the condition still true
 BEQ ENDLOOP If false, then quit
 S Execute the sequence
 BRA REPEAT Repeat the loop
ENDLOOP

*

* REPEAT S UNTIL L
*
NEXT S Execute the sequence
 TST.B D0 Test the value of the condition
 BNE NEXT If not true, then loop again
ENDLOOP

EECC250 - ShaabanEECC250 - Shaaban
#15 lec #15 Winter 1-21-99

PseudocodePseudocode, or Program Design, or Program Design
Language (PDL)Language (PDL)

PDL is simply a methodology for expressing the steps of a program
before it is translated into assembler. It has the following

characteristics:

• A compromise between a high-level language description and
assembly language.

• Facilitates the production of reliable code by providing
an intermediate step.

• Shares some of the features of high-level languages but without
their complexity.

• Provides a shorthand notation for the precise description of
algorithms.

• Can be extended to deal with specific tasks.

EECC250 - ShaabanEECC250 - Shaaban
#16 lec #15 Winter 1-21-99

Example: Comparing two stringsExample: Comparing two strings
Problem Statement:
 A sequence of ASCII characters is stored at memory location

$600 onward (each character one byte). A second string of
equal length is stored at memory location $700 onward. Each
string ends with the character $0D (i.e. carriage return).
Write a program to determine if these two strings are equal. If
they are identical, then place an $FF in D0; otherwise, place
the value $00 in D0.

 First Level PDL - Indicates what to do:
 Match := false
 REPEAT
 Read a pair of characters
 IF they do not match then EXIT
 UNTIL a character = $0D
 Match := true
 EXIT

EECC250 - ShaabanEECC250 - Shaaban
#17 lec #15 Winter 1-21-99

Example (continued)Example (continued)
Second Level PDL - Elaborates on how to do it:Second Level PDL - Elaborates on how to do it:

Match := false
 Set pointer1 to point to String1
 Set pointer2 to point to String2
 REPEAT
 Read the character pointed at by String1
 Compare with the character pointed at by String2
 IF they do not match, THEN EXIT
 Pointer1 := Pointer1 + 1
 Pointer2 := Pointer2 + 1
 UNTIL Character = $0D
 Match := true
 EXIT

EECC250 - ShaabanEECC250 - Shaaban
#18 lec #15 Winter 1-21-99

Example: First Assembly ProgramExample: First Assembly Program
* D0 Error Flag
* A0 Pointer to string 1
* A1 Pointer to string 2

 ORG$400 Start of program
 MOVE.B #$00,D0 Set the flag to fail
 MOVEA.L #$600,A0 A0 points to string1
 MOVEA.L #$700,A1 A1 points to string 2

REPEAT MOVE.B (A0),D1 Get a character from string1
 CMP.B (A1),D1 Compare with string2 character
 BNE EXIT If characters are different exit
 ADDA.L #1,A0 If the two characters are the
 ADDA.L #1,A1 same point to the next pair
 CMP .B #$0D,D1 Test for end of strings
 BNE REPEAT If not compare next pair
 MOVE.B #$FF,D0 ELSE Set flag to success

EXIT STOP
 ORG $600

Pointer1 DS.B <length of string1>
 ORG $700

Pointer1 DS.B <length of string2>

EECC250 - ShaabanEECC250 - Shaaban
#19 lec #15 Winter 1-21-99

Example: Refined Assembly CodeExample: Refined Assembly Code
Car_Ret EQU $0D

ORG $400 Start of program
CLR.B D0 Set the flag to fail
LEA Pointer1,A0 A0 points to string1
LEA Pointer2,A1 A0 points to string2

REPEAT MOVE.B (A0),D1 Get character from string1
CMP.B (A1),D1 Compare it with string2
BNE EXIT If different then EXIT
LEA 1(A0),A0 Point to next pair of characters
LEA 1(A1),A1
CMP.B #Car_Ret,D1 Test for end of strings
BNE REPEAT If not then compare next pair
MOVE.B #$FF,D0 ELSE set D0 to success

EXIT STOP
ORG $600

Pointer1 DS.B <length of string1>
 ORG $700

Pointer1 DS.B <length of string2>

