The Softwar e Design Process

The design process of software for micropr ocessor
systems should incor por ate the following 5 key
concepts:

e Top-Down Design:
 Modular Design

» Testability

* Recoverability

 Structured Programming

EECC250 - Shaaban }

#1 lec #15 Winter 1-21-99

Top-down Design

Programming by step-wise refinement; i.e., decompose a large
complex project or task into smaller, more manageable
componentsor subtasks.

|ter ative process that separatesthe goals of the program from
the methods of achieving them.

Usually accompanied by bottom-up coding.

/\

Subtask t, ,

Lo

Subtask t,

Subtask t;;,

Subtask t,

Subtask t,

/\

Subtask t,,

Subtask t,,

Subtask s,

Smaller tasks

EECC250 - Shaaban

#2 lec #15 Winter 1-21-99

System Specification
Before a system (software or hardware) can be designed,

It must be specified.

A system specification providesthe statement of the goals
that a system should achieve.

The programmer should always validate the end product
against these goals.

A tightly-specified system covering many possible casesis
usually morereliable than aloosely specified system.

It may also be useful to specify " non-goals'; i.e., things
that the system isnot required to do.

EECC250 - Shaaban

#3 lec #15 Winter 1-21-99

Modular Design Single Entry

_) _ Point
A software module is concerned with a single,
logically coherent task.

w

M odules can be" plugged into the system” M odule
and can be supplied by different software
vendors.
Theinternal operation of the moduleis not Module Code
significant; only itsinputsand outputs. (i.e. program)
Modules can betested separately from the
main SYStem- L ocal Data Storage
Coupling indicates how information is shared | | (cannot be accessed

outsidesthe module)
among modules. Strongly coupled modules
share common data which is generally

undesirable,

The strength of a moduleisrelated to whether Mit
or not it performsa single function. Strong Point

modules are easier totest and replace.

EECC250 - Shaaban

#4 lec #15 Winter 1-21-99

Testability

Testing isdone by examining the state of a system at various key points
in itslifetime. Thiscan beimplemented through the use of
breakpoints.

Bottom-up testing:

— Involvestesting the lowest-level components of a system first.
— Startsat thelowest level and kegps moving to higher levels.

— Complete when the highest level of the system has been tested.
— Requireswriting atest driver for the component to be tested.

Top-down testing:
— Involvestesting the highest levelsfirst.
— Helpsto spot major design problemsearly.

— Doesnot requireatest driver for components, but instead requires
stubsto represent the lower level modules.

White Box versus Black Box testing:

— Black Box testing meansthat the inner workings are totally unknown;
thus, all possible inputs and outputs must betested.

— White Box testing means that the inner workings are known; this
knowledge can be used to limit the amount of testing required.

EECC250 - Shaaban

#5 lec #15 Winter 1-21-99

Recover ability

* Recoverability or exception handling isthe ability of
a system to cope with erroneous data and to recover
from certain classes of errors.

e A poor recovery mechanism may be wor se than none
at all.

EECC250 - Shaaban

#6 lec #15 Winter 1-21-99

Structured Programming

e Purpose of structure programming:

e Improve programmer productivity;
« Make programseasier toread,
* Yield morereliable programs.

« All programs can be constructed from three fundamental
components:

— Sequence:

— A linear list of actionsthat are executed in order.

— Looping Mechanism:
— Permitsa sequenceto be carried out a number of times.

— Decision M echanism:
— Allows one of two cour ses of action to betaken.

EECC250 - Shaaban

#7 lec #15 Winter 1-21-99

The Conditional Structure

For the purpose of thefollowing, assumethat 'L’ isalogical condition
whoseresult 'B' isstored in register DO and S, S1 and S2 ar e sequences.

*

* IFL THENS

TST.B DO Test the lower-order byte of DO
BEQ ENDIF If not true, then skip the sequence
S

ENDIF

*I[FL THEN S1 ELSE 32

*

TST.B DO Test the lower-order byte of DO
BEQ ELSE If not ture, then proceed to the else sequence
Sl Execute the S1 sequence
BRA ENDIF Skip the else statement
ELSE S2 Execute the S2 sequence

ENDIF ...

EECC250 - Shaaban }

#8 lec #15 Winter 1-21-99

The CASE Statement

* CASE | OF
* 11: S1
* [2: S2
* 'R}
* In: Sn
*
MOVE I,DO Movethevariableto DO for testing
CMP 11,DO Check ifitisll
BEQ ACT1
CMP 12D0 Check if itisl?2
BEQ ACT2
CMP In,DO Check if itislIn
BEQ ACTn
BEQ ERROR
ACT1 S1 Executethe statement for 11
BRA ENDCASE
ACT?2 S2 Executethe statement for 12
BRA ENDCASE
ACTn Sn Executethe statement for In
BRA ENDCASE
ERROR Handle a value out of range
ENDCASE

EECC250 - Shaaban

#9 lec #15 Winter 1-21-99

JUMPTAB

ACT1

ACT?2

ACTn

ERROR
ENDCASE

The CASE Statement

« If theconditions can be converted to a sequence of integer numbers, then the CASE
statement is mor e efficiently handled by ajump table:

CLR.L DO

LEA JUMPTAB,AO
MOVE |,D0

CMP 11,D0

BLO ERROR
CMP In,DO

BCS ERROR
SUB 11,D0

ASL.L #2,D0
MOVEA.L (A0,D0),AQ

IMP (AO)
DC.L ACT1
DC.L ACT?2
DC.L ACTR

s1

BRA ENDCASE
2

BRA ENDCASE
Sn

BRA ENDCASE
Handle a value out of range

Clear all bitsof DO

Store the address of thejump table
Movethevariableto DO for testing
Check the bottom of therange

Error if lessthelowest value

Check thetop of therange

Error if higher than highest value
Get the offset from thefirst condition
Multiply by 4, addresses arelong words
Get the address of the action

Jump to the appropriate action

First action
Second action

N'th action
Executethe statement for 11

Executethe statement for 12

Executethe statement for In

EECC250 - Shaaban }

#10 lec#15 Winter 1-21-99

L ooping M echanisms

* FOR | = N1 TO N2 DO S

*
MOVE.B #N1,D0 DO istheloop counter

NEXT CMP.B #N2,DO0 Check if theend of the loop
BHI ENDLOOP Quit theloop if counter too high
S Execute the sequence
ADDQ #1,D0 | ncrement the loop counter
BRA NEXT

ENDLOOP

*

* FOR | = N DOWNTO O

*
MOVEW #N,DO DO istheloop counter
BMI ENDLOOP Skip loop if lessthan O

NEXT S Execute the sequence

DBRA DO,NEXT Decrement DO and loop back

EECC250 - Shaaban

#11 lec#15 Winter 1-21-99

DBcc

Operation:

Assembler
Syntax:

Attributes:

Description: Controls a loop of instructions. The parameters are a condition code, a data
register (counter), and a displacement value. The instruction first tests the condition for
termination; if it is true, no operation is performed. If the termination condition is not
true, the low-order 16 bits of the counter data register decrement by one. If the result
is — 1, execution continues with the next instruction. If the result is not equal to — 1,
execution continues at the location indicated by the current value of the program
counter plus the sign-extended 16-bit displacement. The value in the program counter
is the address of the instruction word of the DBecc instruction plus two. The
displacement is a twos complement integer that represents the relative distance in
bytes from the current program counter to the destination program counter. Condition
code cc specifies one of the following conditional tests (refer to Table 3-19 for more
information on these conditional tests):

Test Condition, Decrement, and Branch DBcc
(M68000 Family)

If Condition False
Then (Dn=1 — Dn; If Dn# =1 Then PC + d, — PC)

DBcc Dn, < label >
Size = (Word)

EECC250 - Shaaban I-

#12 lec#15 Winter 1-21-99

DBcc Test Condition, Decrement, and Branch DBcc

(M68000 Family)

Mnemonic Condition Mnemonic Condition
CC(HI) Carry Clear LS Low or Same
CS5(LO) Carry Set LT Less Than

EQ Equal i Minus

F False NE Mot Equal
GE Greater aor Equal PL Plus
GT Greater Than T True

HI High VC Overflow Clear
LE Less or Equal VS Overflow Set

Condition Codes:
Not affected.

DBF Dn,<labd>
decrement Dn and branch if Dn has not reached -1

Some assemblers allow DBRA instead of DBF

EECC250 - Shaaban]-

#13 lec #15 Winter 1-21-99

~ Looping Mechanisms

* WHILE L DO S

*

REPEAT TST.B DO Test if the condition still true
BEQ ENDLOOP If false, then quit
S Execute the sequence
BRA REPEAT Repeat the loop

ENDLOOP

*

* REPEAT S UNTIL L

*

NEXT S Execute the sequence
TST.B DO Test the value of the condition
BNE NEXT If not true, then loop again
ENDLOOP

EECC250 - Shaaban

#14 lec#15 Winter 1-21-99

Pseudocode, or Program Design
L anguage (PDL)

PDL issimply a methodology for expressing the steps of a program

beforeit istrandated into assembler. It hasthefollowing

characteristics:

A compromise between a high-level language description and
assembly language.

« Facilitatesthe production of reliable code by providing
an intermediate step.

« Sharessome of the features of high-level languages but without
their complexity.

* Providesa shorthand notation for the precise description of
algorithms.

 Can beextended to deal with specific tasks.

EECC250 - Shaaban

#15 lec#15 Winter 1-21-99

Example: Comparing two strings
Problem Statement:

A sequence of ASCII charactersis stored at memory location
$600 onward (each character one byte). A second string of
equal length isstored at memory location $700 onward. Each
string endswith the character $0D (i.e. carriagereturn).
Writeaprogram to determineif thesetwo stringsareequal. |f
they areidentical, then place an $FF in DO; otherwise, place
the value $00 in DO.

First Level PDL - Indicateswhat to do:
Match := false
REPEAT

Read a pair of characters

| F they do not match then EXIT
UNTIL acharacter = $0D
Match :=true
EXIT

EECC250 - Shaaban

#16 lec#15 Winter 1-21-99

Example (continued)

Second Level PDL - Elaborateson how to do it:

Match :=false

Set pointer1to point to Stringl

Set pointer 2 to point to String2

REPEAT
Read the character pointed at by Stringl
Comparewith the character pointed at by String2
|F they do not match, THEN EXIT
Pointerl:= Pointerl+1
Pointer2 .= Pointer2 + 1

UNTIL Character = $0D

Match :=true

EXIT

EECC250 - Shaaban

#17 lec#15 Winter 1-21-99

Example: First Assembly Program

* DO Error Flag
* AO Pointer to string 1
Al Pointer to string 2

ORG$400
MOVE.B
MOVEA.L
MOVEA.L
REPEAT MOVE.B
CMP.B
BNE
ADDA.L
ADDA.L
CMP B
BNE
MOVE.B
EXIT STOP
ORG
Pointerl DS.B
ORG
Pointerl DS.B

#$00,D0
#$600,A0
#$700,A1
(A0),D1
(A1),D1
EXIT
#1,A0
#1,A1
#$0D,D1
REPEAT
H#$FF,DO

$600

Start of program

Set the flag to fail

AOQ pointsto stringl

Al pointstostring 2

Get acharacter from stringl
Comparewith string2 character
|f charactersare different exit
If thetwo charactersarethe
same point to the next pair
Test for end of strings

|f not compare next pair
ELSE Set flagto success

<length of stringl>

$700

<length of string2>

EECC250 - Shaaban

#18 lec #15 Winter 1-21-99

Example: Refined Assembly Code

Car_Ret EQU $0D
ORG $400 Start of program
CLR.B DO Set the flag to fail

LEA Pointer LAO AO pointsto stringl
LEA Pointer2,A1 AOQ pointsto string2

REPEAT MOVE.B (A0),D1 Get character from stringl
CMP.B (A1,D1 Compareit with string2
BNE EXIT If different then EXIT
LEA 1(A0),A0 Point to next pair of characters

LEA 1(Al1),Al
CMP.B #Car _Ret,D1 Test for end of strings

BNE REPEAT If not then compare next pair
MOVE.B #3$FF,DO EL SE set DO to success
EXIT STOP
ORG $600
Pointer1 DS.B <length of string1>
ORG $700
Pointer1 DSB <length of string2>

EECC250 - Shaaban

#19 lec#15 Winter 1-21-99

