Representation of Floating Point Numbers in Single Precision *IEEE 754 Standard*

Value = \(N = (-1)^s \times 2^{E-127} \times (1.M) \)

- **Sign**: \(s \)
- **Exponent**: \(E \)
- **Mantissa**: \(M \)

0 < \(E \) < 255

Actual exponent is: \(e = E - 127 \)

Example: 0 = 0 00000000 0 . . . 0

-1.5 = 1 01111111 10 . . . 0

Magnitude of numbers that can be represented is in the range:

\[2^{-126} (1.0) \text{ to } 2^{127} (2 - 2^{-23}) \]

Which is approximately:

\[1.8 \times 10^{-38} \text{ to } 3.40 \times 10^{38} \]
Representation of Floating Point Numbers in Double Precision: IEEE 754 Standard

Value = \(N = (-1)^S \times 2^{E-1023} \times (1.M) \)

<table>
<thead>
<tr>
<th>S</th>
<th>E</th>
<th>M</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>11</td>
<td>52</td>
</tr>
</tbody>
</table>

- **0 < E < 2047**
- **Actual exponent is:** \(e = E - 1023 \)

Example:
- **0 =** 0 00000000000 0 . . . 0
- **-1.5 =** 1 01111111111 10 . . . 0

Magnitude of numbers that can be represented is in the range:
- \(2^{-1022} \) \((1.0)\) to \(2^{1023} \) \((2 - 2^{-52})\)
- **Which is approximately:**
 - \(2.23 \times 10^{308} \) to \(1.8 \times 10^{308} \)
IEEE 754 Format Parameters

<table>
<thead>
<tr>
<th></th>
<th>Single Precision</th>
<th>Double Precision</th>
</tr>
</thead>
<tbody>
<tr>
<td>p (bits of precision)</td>
<td>24</td>
<td>53</td>
</tr>
<tr>
<td>Unbiased exponent</td>
<td></td>
<td></td>
</tr>
<tr>
<td>e_{max}</td>
<td>127</td>
<td>1023</td>
</tr>
<tr>
<td>Unbiased exponent</td>
<td></td>
<td></td>
</tr>
<tr>
<td>e_{min}</td>
<td>-126</td>
<td>-1022</td>
</tr>
<tr>
<td>Exponent bias</td>
<td>127</td>
<td>1023</td>
</tr>
</tbody>
</table>
IEEE 754 Special Number Representation

<table>
<thead>
<tr>
<th>Single Precision</th>
<th>Double Precision</th>
<th>Number Represented</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exponent</td>
<td>Significand</td>
<td>Exponent</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>nonzero</td>
<td>0</td>
</tr>
<tr>
<td>1 to 254</td>
<td>anything</td>
<td>1 to 2046</td>
</tr>
<tr>
<td>255</td>
<td>0</td>
<td>2047</td>
</tr>
<tr>
<td>255</td>
<td>nonzero</td>
<td>2047</td>
</tr>
</tbody>
</table>

\(^1\) May be returned as a result of underflow in multiplication
\(^2\) Positive divided by zero yields “infinity”
\(^3\) Zero divide by zero yields NaN “not a number”
Floating Point Conversion Example

- The decimal number \(.75_{10} \) is to be represented in the IEEE 754 32-bit single precision format:

\[
-2345.125_{10} = 0.112 \quad \text{(converted to a binary number)}
\]

\[
= 1.1 \times 2^{-1} \quad \text{(normalized a binary number)}
\]

- The mantissa is positive so the sign \(S \) is given by:

\[
S = 0
\]

- The biased exponent \(E \) is given by \(E = e + 127 \)

\[
E = -1 + 127 = 126_{10} = 01111110_2
\]

- Fractional part of mantissa \(M \):

\[
M = .10000000000000000000000 \quad \text{(in 23 bits)}
\]

The IEEE 754 single precision representation is given by:

\[
\begin{array}{c|c|c}
0 & 01111110 & 10000000000000000000000 \\
\hline
S & E & M \\
1 \text{ bit} & 8 \text{ bits} & 23 \text{ bits}
\end{array}
\]
Floating Point Conversion Example

- The decimal number \(-2345.125_{10}\) is to be represented in the IEEE 754 32-bit single precision format:

\[-2345.125_{10} = -100100101001.001_{2} \quad \text{(converted to binary)}\]
\[= -1.00100101001001 \times 2^{11} \quad \text{(normalized binary)}\]

- The mantissa is negative so the sign \(S\) is given by:

\[S = 1\]

- The biased exponent \(E\) is given by \(E = e + 127\)

\[E = 11 + 127 = 138_{10} = 10001010_{2}\]

- Fractional part of mantissa \(M\):

\[M = .0010010100100100000000\] (in 23 bits)

The IEEE 754 single precision representation is given by:

\[
\begin{array}{ccc}
\text{S} & \text{E} & \text{M} \\
1 & 10001010 & 00100101001001000000000000
\end{array}
\]

1 bit 8 bits 23 bits
Basic Floating Point Addition Algorithm

Assuming that the operands are already in the IEEE 754 format, performing floating point addition: \(\text{Result} = X + Y = (X_m \times 2^{X_e}) + (Y_m \times 2^{Y_e}) \)

involves the following steps:

(1) Align binary point:
 - Initial result exponent: the larger of \(X_e, Y_e \)
 - Compute exponent difference: \(Y_e - X_e \)
 - If \(Y_e > X_e \) Right shift \(X_m \) that many positions to form \(X_m \times 2^{X_e-Y_e} \)
 - If \(X_e > Y_e \) Right shift \(Y_m \) that many positions to form \(Y_m \times 2^{Y_e-X_e} \)

(2) Compute sum of aligned mantissas:

 \[\text{i.e.} \quad X_m 2^{X_e-Y_e} + Y_m \quad \text{or} \quad X_m + X_m 2^{Y_e-X_e} \]

(3) If normalization of result is needed, then a normalization step follows:

 - Left shift result, decrement result exponent (e.g., if result is 0.001xx...) or
 - Right shift result, increment result exponent (e.g., if result is 10.1xx...)

 Continue until MSB of data is 1 (NOTE: Hidden bit in IEEE Standard)

(4) Check result exponent:

 - If larger than maximum exponent allowed return exponent overflow
 - If smaller than minimum exponent allowed return exponent underflow

(5) If result mantissa is 0, may need to set the exponent to zero by a special step to return a proper zero.
Simplified Floating Point Addition Flowchart

Start

Compare the exponents of the two numbers shift the smaller number to the right until its exponent matches the larger exponent

Add the significands (mantissas)

Normalize the sum, either shifting right and incrementing the exponent or shifting left and decrementing the exponent

Overflow or Underflow ?

If mantissa = 0 set exponent to 0

Generate exception or return error

Done

(1) (2) (3) (4) (5)
Floating Point Addition Example

- Add the following two numbers represented in the IEEE 754 single precision format: $X = 2345.125_{10}$ represented as:

 $\begin{array}{c|c|c}
 0 & 10001010 & 00100101001001000000000000 \\
 \end{array}$

 to $Y = .75_{10}$ represented as:

 $\begin{array}{c|c|c}
 0 & 01111110 & 100000000000000000000000000 \\
 \end{array}$

 (1) Align binary point:
 - $X_e > Y_e$ initial result exponent = $Y_e = 10001010 = 138_{10}$
 - $X_e - Y_e = 10001010 - 01111110 = 00000110 = 12_{10}$
 - Shift Y_m 12 positions to the right to form $Y_m 2^{Ye-X_e} = Y_m 2^{-12} = 0.00000000001100000000000$

 (2) Add mantissas:
 $X_m + Y_m 2^{-12} = 1.00100101001001000000000 + 0.00000000001100000000000 = 1.00100101001110000000000$

 (3) Normalized? Yes
 (4) Overflow? No. Underflow? No (5) zero result? No

 Result $\begin{array}{c|c|c}
 0 & 10001010 & 00100101011111000000000000 \\
 \end{array}$
IEEE 754 Single precision Addition Notes

- If the exponents differ by more than 24, the smaller number will be shifted right entirely out of the mantissa field, producing a zero mantissa.
 - The sum will then equal the larger number.
 - Such truncation errors occur when the numbers differ by a factor of more than 2^{24}, which is approximately 1.6×10^7.
 - Thus, the precision of IEEE single precision floating point arithmetic is approximately 7 decimal digits.

- Negative mantissas are handled by first converting to 2's complement and then performing the addition.
 - After the addition is performed, the result is converted back to sign-magnitude form.

- When adding numbers of opposite sign, cancellation may occur, resulting in a sum which is arbitrarily small, or even zero if the numbers are equal in magnitude.
 - Normalization in this case may require shifting by the total number of bits in the mantissa, resulting in a large loss of accuracy.

- Floating point subtraction is achieved simply by inverting the sign bit and performing addition of signed mantissas as outlined above.
Basic Floating Point Subtraction Algorithm

Assuming that the operands are already in the IEEE 754 format, performing floating point addition: \[\text{Result} = X - Y = (X_m \times 2^{X_e}) - (Y_m \times 2^{Y_e}) \]

involves the following steps:

(1) Align binary point:
 - Initial result exponent: the larger of \(X_e, Y_e \)
 - Compute exponent difference: \(Y_e - X_e \)
 - If \(Y_e > X_e \) Right shift \(X_m \) that many positions to form \(X_m \times 2^{X_e-Y_e} \)
 - If \(X_e > Y_e \) Right shift \(Y_m \) that many positions to form \(Y_m \times 2^{Y_e-X_e} \)

(2) Subtract the aligned mantissas:
 i.e \[X_m2^{X_e-Y_e} - Y_m \quad \text{or} \quad X_m - X_m2^{Y_e-X_e} \]

(3) If normalization of result is needed, then a normalization step follows:
 - Left shift result, decrement result exponent (e.g., if result is 0.001xx…) or
 - Right shift result, increment result exponent (e.g., if result is 10.1xx…)

 Continue until MSB of data is 1 (NOTE: Hidden bit in IEEE Standard)

(4) Check result exponent:
 - If larger than maximum exponent allowed return exponent overflow
 - If smaller than minimum exponent allowed return exponent underflow

(5) If result mantissa is 0, may need to set the exponent to zero by a special step to return a proper zero.
Start

(1) Compare the exponents of the two numbers. If they are equal, go to step (2). If they are not equal, shift the smaller number to the right until its exponent matches the larger exponent.

(2) Subtract the mantissas.

(3) Normalize the sum, either shifting right and incrementing the exponent or shifting left and decrementing the exponent.

(4) Check if overflow or underflow occurs. If so, generate an exception or return an error.

(5) If the mantissa is 0, set the exponent to 0.

Done
Basic Floating Point Multiplication Algorithm

Assuming that the operands are already in the IEEE 754 format, performing floating point multiplication:

\[
\text{Result} = R = X \times Y = (-1)^{X_s} (X_m \times 2^{X_e}) \times (-1)^{Y_s} (Y_m \times 2^{Y_e})
\]

involves the following steps:

1. If one or both operands is equal to zero, return the result as zero, otherwise:
2. Compute the sign of the result \(X_s \ XOR \ Y_s\)
3. Compute the mantissa of the result:
 - Multiply the mantissas: \(X_m \times Y_m\)
 - Round the result to the allowed number of mantissa bits
4. Compute the exponent of the result:
 \[
 \text{Result exponent} = \text{biased exponent (X)} + \text{biased exponent (Y)} - \text{bias}
 \]
5. Normalize if needed, by shifting mantissa right, incrementing result exponent.
6. Check result exponent for overflow/underflow:
 - If larger than maximum exponent allowed return exponent overflow
 - If smaller than minimum exponent allowed return exponent underflow
Simplified Floating Point Multiplication Flowchart

1. Is one/both operands = 0?
 - Set the result to zero: exponent = 0

2. Compute sign of result: Xs XOR Ys

3. Multiply the mantissas

4. Round or truncate the result mantissa

5. Compute exponent: biased exp.(X) + biased exp.(Y) - bias

6. Normalize mantissa if needed

7. Generate exception or return error

Overflow or Underflow?

Done
Floating Point Multiplication Example

- Multiply the following two numbers represented in the *IEEE 754* single precision format: \(X = -18_{10} \) represented as:

| 1 | 10000011 | 00100000000000000000000 |

and \(Y = 9.5_{10} \) represented as:

| 0 | 10000010 | 00110000000000000000000 |

1. Value of one or both operands = 0? No, continue with step 2
2. Compute the sign: \(S = Xs \ XOR \ Ys = 1 \ XOR 0 = 1 \)
3. Multiply the mantissas: The product of the 24 bit mantissas is 48 bits with two bits to the left of the binary point:

\[
(01).01010110000000000000000
\]

Truncate to 24 bits:

| hidden | \(\rightarrow\) | (1).01010110000000000000000 |

4. Compute exponent of result:

\[
Xe + Ye - 127_{10} = 1000\ 0011 + 1000\ 0010 - 0111111 = 1000\ 0110
\]

5. Result mantissa needs normalization? No

| Result | 1 | 10000110 | 0101010110000000000000000 |
IEEE 754 Single precision Multiplication Notes

• Rounding occurs in floating point multiplication when the mantissa of the product is reduced from 48 bits to 24 bits.
 – The least significant 24 bits are discarded.

• Overflow occurs when the sum of the exponents exceeds 127, the largest value which is defined in bias-127 exponent representation.
 – When this occurs, the exponent is set to 128 \((E = 255) \) and the mantissa is set to zero indicating + or - infinity.

• Underflow occurs when the sum of the exponents is more negative than -126, the most negative value which is defined in bias-127 exponent representation.
 – When this occurs, the exponent is set to -127 \((E = 0) \).
 – If \(M = 0 \), the number is exactly zero.
 – If \(M \) is not zero, then a denormalized number is indicated which has an exponent of -127 and a hidden bit of 0.
 – The smallest such number which is not zero is \(2^{-149} \). This number retains only a single bit of precision in the rightmost bit of the mantissa.
Basic Floating Point Division Algorithm

Assuming that the operands are already in the IEEE 754 format, performing floating point multiplication:

\[\text{Result} = R = \frac{X}{Y} = (-1)^{X_s} \left(X_m \times 2^{X_e} \right) / (-1)^{Y_s} \left(Y_m \times 2^{Y_e} \right) \]

involves the following steps:

1. If the divisor Y is zero return “Infinity”, if both are zero return “NaN”
2. Compute the sign of the result \(X_s \ XOR \ Y_s \)
3. Compute the mantissa of the result:
 - The dividend mantissa is extended to 48 bits by adding 0's to the right of the least significant bit.
 - When divided by a 24 bit divisor \(Y_m \), a 24 bit quotient is produced.
4. Compute the exponent of the result:
 \[\text{Result exponent} = \left[\text{biased exponent (X)} - \text{biased exponent (Y)} \right] + \text{bias} \]
5. Normalize if needed, by shifting mantissa left, decrementing result exponent.
6. Check result exponent for overflow/underflow:
 - If larger than maximum exponent allowed return exponent overflow
 - If smaller than minimum exponent allowed return exponent underflow
IEEE 754 Error Rounding

- In integer arithmetic, the result of an operation is well-defined:
 - Either the exact result is obtained or overflow occurs and the result cannot be represented.

- In floating point arithmetic, rounding errors occur as a result of the limited precision of the mantissa. For example, consider the average of two floating point numbers with identical exponents, but mantissas which differ by 1. Although the mathematical operation is well-defined and the result is within the range of representable numbers, the average of two adjacent floating point values cannot be represented exactly.

- The IEEE FPS defines four rounding rules for choosing the closest floating point when a rounding error occurs:
 - RN - Round to Nearest. Break ties by choosing the least significant bit = 0.
 - RZ - Round toward Zero. Same as truncation in sign-magnitude.
 - RP - Round toward Positive infinity.
 - RM - Round toward Minus infinity. Same as truncation in integer 2's complement arithmetic.

- RN is generally preferred and introduces less systematic error than the other rules.
Floating Point Error Rounding Observations

- The absolute error introduced by rounding is the actual difference between the exact value and the floating point representation.
- The size of the absolute error is proportional to the magnitude of the number.
 - For numbers in single Precision IEEE 754 format, the absolute error is less than 2^{-24}.
 - The largest absolute rounding error occurs when the exponent is 127 and is approximately 10^{31} since $2^{-24}.2^{127} = 10^{31}$
- The relative error is the absolute error divided by the magnitude of the number which is approximated. For normalized floating point numbers, the relative error is approximately 10^{-7}
- Rounding errors affect the outcome of floating point computations in several ways:
 - Exact comparison of floating point variables often produces incorrect results. Floating variables should not be used as loop counters or loop increments.
 - Operations performed in different orders may give different results. On many computers, a+b may differ from b+a and (a+b)+c may differ from a+(b+c).
 - Errors accumulate over time. While the relative error for a single operation in single precision floating point is about 10^{-7}, algorithms which iterate many times may experience an accumulation of errors which is much larger.
68000 FLOATING POINT ADD/SUBTRACT
(FFPADD/FFPSUB) Subroutine

**
* FFPADD/FFPSUB *
* FAST FLOATING POINT ADD/SUBTRACT *
*
* FFPADD/FFPSUB - FAST FLOATING POINT ADD AND SUBTRACT *
*
* INPUT: *
* FFPADD *
* D6 - FLOATING POINT ADDEND *
* D7 - FLOATING POINT ADDER *
* FFPSUB *
* D6 - FLOATING POINT SUBTRAHEND *
* D7 - FLOATING POINT MINUEND *
*
* OUTPUT: *
* D7 - FLOATING POINT ADD RESULT *
*
* CONDITION CODES: *
* N - RESULT IS NEGATIVE *
* Z - RESULT IS ZERO *
* V - OVERFLOW HAS OCCURED *
* C - UNDEFINED *
* X - UNDEFINED *

* (C) COPYRIGHT 1980 BY MOTOROLA INC. *
REGISTERS D3 THRU D5 ARE VOLATILE

CODE SIZE: 228 BYTES STACK WORK AREA: 0 BYTES

NOTES:
 1) ADDEND/SUBTRAHEND UNALTERED (D6).
 2) UNDERFLOW RETURNS ZERO AND IS UNFLAGGED.
 3) OVERFLOW RETURNS THE HIGHEST VALUE WITH THE
 CORRECT SIGN AND THE 'V' BIT SET IN THE CCR.

TIME: (8 MHZ NO WAIT STATES ASSUMED)

COMPOSITE AVERAGE 20.625 MICROSECONDS

ADD: ARG1=0 7.75 MICROSECONDS
 ARG2=0 5.25 MICROSECONDS

 LIKE SIGNS 14.50 - 26.00 MICROSECONDS
 AVERAGE 18.00 MICROSECONDS

 UNLIKE SIGNS 20.13 - 54.38 MICROSECONDS
 AVERAGE 22.00 MICROSECONDS

SUBTRACT: ARG1=0 4.25 MICROSECONDS
 ARG2=0 9.88 MICROSECONDS

 LIKE SIGNS 15.75 - 27.25 MICROSECONDS
 AVERAGE 19.25 MICROSECONDS

 UNLIKE SIGNS 21.38 - 55.63 MICROSECONDS
 AVERAGE 23.25 MICROSECONDS

* SUBTRACT ENTRY POINT *

FFPSUB MOVE.B D6,D4 TEST ARG1
BEQ.S FPART2 RETURN ARG2 IF ARG1 ZERO
EOR.B #$80,D4 INVERT COPIED SIGN OF ARG1
BMI.S FPAMI1 BRANCH ARG1 MINUS

* + ARG1

MOVE.B D7,D5 COPY AND TEST ARG2
BMI.S FPAMS BRANCH ARG2 MINUS
BNE.S FPALS BRANCH POSITIVE NOT ZERO
BRA.S FPART1 RETURN ARG1 SINCE ARG2 IS ZERO

* ADD ENTRY POINT *

FFPADD MOVE.B D6,D4 TEST ARGUMENT1
BMI.S FPAMI1 BRANCH IF ARG1 MINUS
BEQ.S FPART2 RETURN ARG2 IF ZERO

* + ARG1

MOVE.B D7,D5 TEST ARGUMENT2
BMI.S FPAMS BRANCH IF MIXED SIGNS
BEQ.S FPART1 ZERO SO RETURN ARGUMENT1
* +ARG1 +ARG2
* -ARG1 -ARG2
FPALS SUB.B D4,D5 TEST EXPONENT MAGNITUDES
BMI.S FPA2LT BRANCH ARG1 GREATER
MOVE.B D7,D4 SETUP STRONGER S+EXP IN D4

* ARG1EXP <= ARG2EXP
CMP.B #24,D5 OVERBEARING SIZE
BCC.S FPART2 BRANCH YES, RETURN ARG2
MOVE.L D6,D3 COPY ARG1
CLR.B D3 CLEAN OFF SIGN+EXPONENT
LSR.L D5,D3 SHIFT TO SAME MAGNITUDE
MOVE.B #$80,D7 FORCE CARRY IF LSB-1 ON
ADD.L D3,D7 ADD ARGUMENTS
BCS.S FPA2GC BRANCH IF CARRY PRODUCED
FPARSR MOVE.B D4,D7 RESTORE SIGN/EXPONENT
RTS RETURN TO CALLER
* ADD SAME SIGN OVERFLOW NORMALIZATION

FPA2GC ROXR.L #1,D7 SHIFT CARRY BACK INTO RESULT
ADD.B #1,D4 ADD ONE TO EXPONENT
BVS.S FPA2OS BRANCH OVERFLOW
BCC.S FPARSR BRANCH IF NO EXPONENT OVERFLOW

FPA2OS MOVEQ #-1,D7 CREATE ALL ONES
SUB.B #1,D4 BACK TO HIGHEST EXPONENT+SIGN
MOVE.B D4,D7 REPLACE IN RESULT

* OR.B #$02,CCR SHOW OVERFLOW OCCURRED
DC.L $003C0002 ****ASSEMBLER ERROR****
RTS RETURN TO CALLER

* RETURN ARGUMENT1

FPART1 MOVE.L D6,D7 MOVE IN AS RESULT
MOVE.B D4,D7 MOVE IN PREPARED SIGN+EXPONENT
RTS RETURN TO CALLER

* RETURN ARGUMENT2

FPART2 TST.B D7 TEST FOR RETURNED VALUE
RTS RETURN TO CALLER
* -ARG1EXP > -ARG2EXP
* +ARG1EXP > +ARG2EXP

FPA2LT CMP.B #-24,D5 ? ARGUMENTS WITHIN RANGE
BLE.S FPART1 NOPE, RETURN LARGER
NEG.B D5 CHANGE DIFFERENCE TO POSITIVE
MOVE.L D6,D3 SETUP LARGER VALUE
CLR.B D7 CLEAN OFF SIGN+EXPONENT
LSR.L D5,D7 SHIFT TO SAME MAGNITUDE
MOVE.B #$80,D3 FORCE CARRY IF LSB–1 ON
ADD.L D3,D7 ADD ARGUMENTS
BCS.S FPA2GC BRANCH IF CARRY PRODUCED
MOVE.B D4,D7 RESTORE SIGN/EXPONENT
RTS RETURN TO CALLER

* -ARG1

FPAMI1 MOVE.B D7,D5 TEST ARG2'S SIGN
BMI.S FPA2GC BRANCH FOR LIKE SIGNS
BEQ.S FPART1 IF ZERO RETURN ARGUMENT1
* -ARG1 +ARG2
* +ARG1 -ARG2

FPAMS MOVEQ #$-128,D3 CREATE A CARRY MASK ($80)
EOR.B D3,D5 STRIP SIGN OFF ARG2 S+EXP COPY
SUB.B D4,D5 COMPARE MAGNITUDES
BEQ.S FPAEQ BRANCH EQUAL MAGNITUDES
BMI.S FPATLT BRANCH IF ARG1 LARGER

* ARG1 <= ARG2

CMP.B #24,D5 COMPARE MAGNITUDE DIFFERENCE
BCC.S FPART2 BRANCH ARG2 MUCH BIGGER
MOVE.B D7,D4 ARG2 S+EXP DOMINATES
MOVE.B D3,D7 SETUP CARRY ON ARG2
MOVE.L D6,D3 COPY ARG1

FPAMSS CLR.B D3 CLEAR EXTRANEOUS BITS
LSR.L D5,D3 ADJUST FOR MAGNITUDE
SUB.L D3,D7 SUBTRACT SMALLER FROM LARGER
BMI.S FPARSR RETURN FINAL RESULT IF NO OVERFLOW
* MIXED SIGNS NORMALIZE

FPANOR MOVE.B D4,D5 SAVE CORRECT SIGN
FPANRM CLR.B D7 CLEAR SUBTRACT RESIDUE
SUB.B #1,D4 MAKE UP FOR FIRST SHIFT
CMP.L #$00007FFF,D7 ? SMALL ENOUGH FOR SWAP
BHI.S FPAXQN BRANCH NOPE
SWAP.W D7 SHIFT LEFT 16 BITS REAL FAST
SUB.B #16,D4 MAKE UP FOR 16 BIT SHIFT
FPAXQN ADD.L D7,D7 SHIFT UP ONE BIT
DBMI D4,FPAXQN DECREMENT AND BRANCH IF POSITIVE
EOR.B D4,D5 ? SAME SIGN
BMI.S FPAZRO BRANCH UNDERFLOW TO ZERO
MOVE.B D4,D7 RESTORE SIGN/EXponent
BEQ.S FPAZRO RETURN ZERO IF EXPONENT

UNDERFLOWED

RTS RETURN TO CALLER

* EXPONENT UNDERFLOWED - RETURN ZERO

FPAZRO MOVEQ.L #0,D7 CREATE A TRUE ZERO
RTS RETURN TO THE CALLER
* ARG1 > ARG2

FPATLT CMP.B #−24,D5 ? ARG1 >> ARG2
BLE.S FPART1 RETURN IT IF SO
NEG.B D5 ABSOLUTIZE DIFFERENCE
MOVE.L D7,D3 MOVE ARG2 AS LOWER VALUE
MOVE.L D6,D7 SETUP ARG1 AS HIGH
MOVE.B #$80,D7 SETUP ROUNding BIT
BRA.S FPAMSS PERFORM THE ADDITION

* EQUAL MAGNITUDES

FPAEQ MOVE.B D7,D5 SAVE ARG1 SIGN
EXG.L D5,D4 SWAP ARG2 WITH ARG1 S+EXP
MOVE.B D6,D7 INSURE SAME LOW BYTE
SUB.L D6,D7 OBTAIN DIFFERENCE
BEQ.S FPAZRO RETURN ZERO IF IDENTICAL
BPL.S FPANOR BRANCH IF ARG2 BIGGER
NEG.L D7 CORRECT DIFFERENCE TO POSITIVE
MOVE.B D5,D4 USE ARG2'S SIGN+EXPONENT
BRA.S FPANRM AND GO NORMALIZE

END