
EECC250 - Shaaban
#1 lec #11 Winter99 1-7-2000

Programmed I/O (Polling)Programmed I/O (Polling)

Is the
data

ready?

read
data

store
data

yes
no

done? no

yes

CPU

IOC

device

Memory

6800068000

System Bus

68230

Terminal
Mouse

Keyboard/Switches
etc.

User
Program

• A busy-wait loop is used in this I/O method
• Not an efficient way to use the CPU unless the
 I/O device is very fast (faster than the CPU).
• But checks for I/O completion can be dispersed
 among useful computation

EECC250 - Shaaban
#2 lec #11 Winter99 1-7-2000

Interrupt-Driven Data TransferInterrupt-Driven Data Transfer
add
sub
and
or
nop

lea
move
...
rte

memory

User
Program
(normal
execution)

(1) I/O
 interrupt

(2) save PC, SR

(3) Go to interrupt
 service routine
 (ISR) address

 (4)
Restore PC, SR
 Return to user
 program

CPU

IOC

device

Memory

68000

 System Bus

68230

Terminal
Mouse

Keyboard/Switches
etc.

Interrupt Lines 7

• User program normal execution only halted during
 actual data transfer
• More efficient than polling I/O

EECC250 - Shaaban
#3 lec #11 Winter99 1-7-2000

• Conditions interrupting ordinary program execution are called
exceptions when caused by software sources internal to the CPU.

• Interrupts are exceptions which are caused by hardware sources
external to the CPU.

• An interrupt or exception generally requires special handling by the
CPU in terms of executing an Interrupt Service Routine (ISR).

• Example: An I/O device informs the CPU that data is ready and
requests special processing by setting an Interrupt Request line (IRQ)
to True.

– 68000 has 7 such IRQ lines: (IRQ1-IRQ7).

• If two hardware interrupts occur simultaneously the IRQ with
a higher priority (higher IRQ number) gets serviced.

• An interrupt with a higher IRQ can interrupt the ISR of an interrupt
with a lower IRQ.

Interrupts & ExceptionsInterrupts & Exceptions

EECC250 - Shaaban
#4 lec #11 Winter99 1-7-2000

Vectored InterruptsVectored Interrupts
• When the 68000 senses that an Interrupt Request is pending it

stops the normal program execution and must identify the type
of interrupt or exception to execute the correct handling routine.

• The 68000 must be in supervisor mode as set in SR (S bit = 1) to
handle interrupt routines.

• The 68000 allows 255 such routines and stores their location
(called a vector) addresses in the first 1K of 68000 program
memory.

– This area is called the exception vector table:
– vector #1 - SPECIAL - for system start-up
– vector #2
 …..
– vector #255

– Address of exception vector = 4 x exception vector number

Vectors 64-255 are user interrupt vectors

EECC250 - Shaaban
#5 lec #11 Winter99 1-7-2000

Vectored InterruptsVectored Interrupts
• The interrupt vector is provided to the CPU on the data bus

by the interrupting I/O device from an interrupt vector
register:

• When the 68000 accepts the interrupt, it acknowledges this
to the device using line IACK and it looks for the interrupt
(or exception) vector on the data bus.

68000

(PIT, etc.)

EECC250 - Shaaban
#6 lec #11 Winter99 1-7-2000

Status Register (SR) & InterruptsStatus Register (SR) & Interrupts
I2 I1 I0 : Interrupt level (interrupt mask bits, value range = 0 to 7)

• The 68000 only accepts interrupts with a higher
 level than that set by the interrupt mask bits
• An interrupt with level 7 cannot be masked and must
 be accepted by the 68000.

• When an interrupt is accepted I2 I1 I0
 (Interrupt mask) is set to the current interrupt level.

EECC250 - Shaaban
#7 lec #11 Winter99 1-7-2000

Status Register: The System PartStatus Register: The System Part

EECC250 - Shaaban
#8 lec #11 Winter99 1-7-2000

68000 Exception Vector Table68000 Exception Vector Table

EECC250 - Shaaban
#9 lec #11 Winter99 1-7-2000

68000 Exception Vector Table (continued)68000 Exception Vector Table (continued)

EECC250 - Shaaban
#10 lec #11 Winter99 1-7-2000

68000 Execution States68000 Execution States

EECC250 - Shaaban
#11 lec #11 Winter99 1-7-2000

Interrupt Handling StepsInterrupt Handling Steps
When an interrupt is requested by I/O and accepted by the CPU…

1. CPU finishes executing the current instruction

2. Acknowledge the acceptance of the interrupt to the I/O device.
3. Device provides interrupt vector after the acknowledgement.

4. Determine the start address of ISR (which interrupt vector).
⇒ Usually from the exception vector table in memory.

5. Push PC and Status Register, SR on stack.

6. Initialize the status register (for the exception routine)
⇒ Usually, set S = 1, T = 0, update interrupt level in SR for

 external exceptions to the current accepted interrupt level

7. Load ISR start address into PC
8. ISR proceeds to execute like a normal subroutine except it must

 end with the instruction:
 RTE ReTurn from Exception

 (similar to RTS, pops PC and SR from system stack)

EECC250 - Shaaban
#12 lec #11 Winter99 1-7-2000

EECC250 - Shaaban
#13 lec #11 Winter99 1-7-2000

Example:Example:

68000 Responding68000 Responding
to a level 6to a level 6
Vectored InterruptVectored Interrupt

EECC250 - Shaaban
#14 lec #11 Winter99 1-7-2000

Format of 68230 Port General ControlFormat of 68230 Port General Control
Register, PGCRRegister, PGCR

PGCR7 PGCR6 PGCR5 PGCR4 PGCR3 PGCR2 PGCR1 PGCR0

Port Mode
 Control

00 Mode 0
01 Mode 1
10 Mode 2
11 Mode 3

H34
Enable

H12
Enable

H4
sense

H3
sense

H2
sense

H1
sense

0 Disable
1 Enable

0 Active low
1 Active high

Example:
 PGCR = %00010000
 Means:

 Mode 0, Unidirectional 8-bit, separate PA & PB
 H34 handshaking disabled
 H12 handshaking enabled
 H4-H4 active low

EECC250 - Shaaban
#15 lec #11 Winter99 1-7-2000

68230 Port Status Register, PSR68230 Port Status Register, PSR
• Reflects activity of the handshake lines

 PSR7 PSR6 PSR5 PSR4 PSR3 PSR2 PSR1 PSR0

H4
Level

H2
Level

H4S H3S H2S H1SH1
Level

 H3
 Level

Follow
level of line

 Set by line
depending on mode

PSR0-PSR3 must be cleared by the program by writing a 1 onto them

EECC250 - Shaaban
#16 lec #11 Winter99 1-7-2000

Format of Port A Control Register in Mode 0Format of Port A Control Register in Mode 0
PACR7 PACR6 PACR5 PACR4 PACR3 PACR2 PACR1 PACR0

 Submode:

00 submode 0
01 submode 1
10 submode 1x

 H2 Control

0xx Edge-sensitive input
100 output- negated
101 output - asserted
110 output - interlocked
 handshake
111 Output - pulsed
 handshake

 H2
Interrupt

0 Disabled
1 Enabled

 H1
 Control

0X H1 interrupt
 disabled
10 H1 interrupt
 enabled
XX

PACR

Example: PACR = %00000010
 PADDR = %00000000

 Means: Port A is used as an input port
 Submode 0 (Double Buffered input)

 H2 Edge-sensitive
 H2 interrupt disabled
 H1 interrupt enabled

EECC250 - Shaaban
#17 lec #11 Winter99 1-7-2000

68230 Port Service Request Register68230 Port Service Request Register
PSRR (PIT + $02)PSRR (PIT + $02)

• Determines PIT interrupt/DMA settings

PSRR7 PSRR6 PSRR5 PSRR4 PSRR3 PSRR2 PSRR1 PSRR0

X DMA Control Interrupt Control Port Priority Control

PSRR4 PSRR3

 0 0 No interrupt
 support
 0 1 Autovectored
 interrupts
 1 0

 1 1 Vectored interrupts
 supported

Port Interrupt Priority Order of Priority
PSRR2 PSSR1 PSSR0 Highest Lowest

 0 0 0 H1S H2S H3S H4S
 0 0 1 H2S H1S H3S H4S
 0 1 0 H1S H2S H4S H3S
 0 1 1 H2S H1S H4S H3S
 1 0 0 H3S H4S H1S H2S
 1 0 1 H3S H4S H2S H1S
 1 1 0 H4S H3S H1S H2S
 1 1 1 H4S H3S H2S H1S

EECC250 - Shaaban
#18 lec #11 Winter99 1-7-2000

Format of 68230 Port Interrupt VectorFormat of 68230 Port Interrupt Vector
Register PIVR (PIT+$0A)Register PIVR (PIT+$0A)

PIVR7 PIVR6 PIVR5 PIVR4 PIVR3 PIVR2 PIVR1 PIVR0

Interrupt Vector Number

User Defined Value
Selected
Automatically

Interrupt Source PIVR1 PIVR0

 H1 0 0
 H2 0 1
 H3 1 0
 H4 1 1

EECC250 - Shaaban
#19 lec #11 Winter99 1-7-2000

PIT EQU $0FF000 Base Address of PI/T
PGCR EQU PIT Port General Control Register
PSRR EQU PIT+2 Port service request register
PADDR EQU PIT+4 Data direction register A
PBDDR EQU PIT+6 Data direction register B
PCDDR EQU PIT+$08 Data direction register C
PIVR EQU PIT+$0A Port Interrupt Vector register
PACR EQU PIT+$0C Port A control register
PBCR EQU PIT+$0E Port B control register
PADR EQU PIT+$10 Port A data register
PBDR EQU PIT+$12 Port B data register
PCDR EQU PIT+$18 Port C data register
PSR EQU PIT+$1A Port status register
TCR EQU PIT+$20 Timer control register
TIVR EQU PIT+$22 Timer interrupt vector register
CPR EQU PIT+$24 Dummy address of preload register
CPRH EQU PIT+$26 Timer preload register high
CPRM EQU PIT+$28 Timer preload register middle
CPRL EQU PIT+$2A Timer preload register low
CNTR EQU PIT+$2C Dummy address of timer register
CNTRH EQU PIT+$2E Timer register high
CNTRM EQU PIT+$30 Timer register middle
CNTRL EQU PIT+$32 Timer register low
TSR EQU PIT+$34 Timer status register

Addresses
of Timer
Related
Registers

Addresses
of Port
Related
Registers

68230 Registers Address Equates68230 Registers Address Equates

EECC250 - Shaaban
#20 lec #11 Winter99 1-7-2000

Interrupt-Driven PIT Input ExampleInterrupt-Driven PIT Input Example
• Input one byte from port A and buffers it in memory, whenever an interrupt

is received on line H1
* Main Program
H1_VEC EQU 68 PIT Exception vector number
H1_V_A EQU H1_VEC*4 ISR Exception vector table address
PGCRM EQU %00010000 Mode 0, submode 00
PACRM EQU %00000010 PGCR value to enable H1 interrupt

 ORG $1000
MAIN MOVEA.L #$07FFE,A7 Initialize SP

 LEA H1_ISR,A0 Load A0 with address of PIT Routine
 MOVE.L A0,H1_V_A Put ISR address in vector table
 MOVE.B #H1_VEC,PIVR Initialize PIVR with interrupt vector
 MOVE.B #PGCRM,PGCR Initialize PGCR
 MOVE.B #PACRM,PACR Initialize port A
 MOVE.B #$00, PADDR Set Port A as input
 MOVE.B #%00011000,PSRR Enable vectored interrupts in PSRR
 LEA BUFFER,A1 Load DATA address in A1
 ANDI #$0F0FF,SR Enable interrupts in SR
 LOOP NOP Fake loop just for example
 BRA LOOP main program doing other tasks here

EECC250 - Shaaban
#21 lec #11 Winter99 1-7-2000

Interrupt-Driven PIT Input ExampleInterrupt-Driven PIT Input Example

**** PIT Interrupt Service Routine H1_ISR
*

H1_ISR ORI #$0700,SR Disable interrupts
MOVE.B PADR,D1 Get a byte from port A

 MOVE.B D1,(A1)+ Store byte in memory buffer

 ANDI #$0F0FF,SR Enable interrupts
 RTE Return from exception

 STOP #$2700

 ORG $2000

BUFFER DS.B 1000 reserve 1000 bytes for buffer

 END

EECC250 - Shaaban
#22 lec #11 Winter99 1-7-2000

Timer Control Register (TCR) Value ToTimer Control Register (TCR) Value To
Enable Periodic Timer InterruptEnable Periodic Timer Interrupt

Tout/TIACK*
 Control

Zero-detect
 Control

Clock Control
 Timer
EnableNone

TCR7 TCR6 TCR5 TCR4 TCR3 TCR2 TCR1 TCR0

1 0 1 0 0 0 0 1
PC3/Tout used as timer
interrupt request line
PC7/TIACK* used
to acknowledge timer
interrupts

After ZD,
counter
restarts
from initial
preloaded
value

Enable
timer

PC2/Tin
not used
counter clock
CLK/32

EECC250 - Shaaban
#23 lec #11 Winter99 1-7-2000

Periodic Timer Interrupts ExamplePeriodic Timer Interrupts Example
• The subroutine T_SET preloads the timer with an initial value, and enables timer interrupt.

• Once the timer is enabled by calling T_SET, an interrupt is generated periodically to
perform the tasks in the timer interrupt service routine, T_ISR.

*

* Timer setup subroutine:

T_VEC EQU 70 Timer Exception vector number

T_V_A EQU T_VEC*4 ISR Exception vector table address

 ORG $1000
T_SET LEA T_ISR,A0 Load A0 with address of Timer ISR

 MOVE.L A0,T_V_A Put Timer ISR address in vector table

 MOVE.B #T_VEC,TIVR Initialize TIVR with interrupt vector

 MOVE.L #$00FFFFFF,D0 Set maximum count

 MOVE.L D0,CPR preload count value in CPR

 MOVE.B #%10100001 set up TCR, enable timer
 RTS

* Timer interrupt service routine.

T_ISR MOVE.B #1,TSR Clear ZDS bit in TSR

*

* . . . Do tasks needed in ISR

RTE

