
EECC250 - ShaabanEECC250 - Shaaban
#1 Lec # 0 Winter99 11-29-99

Number SystemsNumber Systems
• Standard positional representation of numbers:

 An unsigned number with whole and fraction portions is
represented as:

The value of this number is given by:

• Where “b” is the base of the number system (e.g 2, 8, 10,
16) and “a” is a digit that range from 0 to b-1

• The "radix point" is used to separate the whole number
from the fractional portion. In base 10, this is the decimal
point; in base 2, the binary point.

KK 321101321 . −−−−−−− aaaaaaaaaa nnnn

KK +×+×+×+×= −
−

−
−

1
1

0
0

1
1 babababaN n

n
n

n

EECC250 - ShaabanEECC250 - Shaaban
#2 Lec # 0 Winter99 11-29-99

Number Systems Used in ComputersNumber Systems Used in Computers

Name
of Base

Base Set of Digits Example

Decimal b=10

b=2

b=16

b=10

a= {0,1,2,3,4,5,6,7,8,9} 25510

Binary

a= {0,1,2,3,4,5,6,7} 3778

a= {0,1} %111111112

a= {0,1,2,3,4,5,6,7,8,9,A, B, C, D, E, F} $FF16

Octal

Hexadecimal

Binary 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

Hex 0 1 2 3 4 5 6 7 8 9 A B C D E F

Decimal 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

EECC250 - ShaabanEECC250 - Shaaban
#3 Lec # 0 Winter99 11-29-99

Converting from Decimal to BinaryConverting from Decimal to Binary
An Example:An Example:

EECC250 - ShaabanEECC250 - Shaaban
#4 Lec # 0 Winter99 11-29-99

Algorithm for Converting from Decimal to Any BaseAlgorithm for Converting from Decimal to Any Base
• Separate the number into its whole number (wholeNum) and fractional

(fracNum) portions.

• Convert the whole number portion by repeating the following until
"wholeNum" is 0:

digit = wholeNum % base;

wholeNum /= base;

• Convert the fractional portion by repeating the following until "fracNum"
is 0 or sufficient precision has been reached:

 fracNum *= base;

 digit = (int)base;

 fracNum -= base;

• The final answer is the whole number and fractional computation result
separated by a radix point.

The "digit" resulting from each step is the
next digit under the new base starting
with position 0 to the left of the decimal
point.

The "digit" resulting from each step is
the next digit under the new base
starting with position 0 to the right of
the decimal point.

EECC250 - ShaabanEECC250 - Shaaban
#5 Lec # 0 Winter99 11-29-99

Algorithm for Converting from Any Base to DecimalAlgorithm for Converting from Any Base to Decimal
• Separate the number into its whole number (wholeNum) and

fractional (fracNum) portions.

• Convert the whole number portion by starting at the left end
advancing to the right where "wholeNum" is initially set to 0:

 wholeNum = wholeNum * base + digit

– Example: 310716 to decimal

 0 +3 = 0 + 3 = 3

 (3*16) + 1 = 48 + 1 = 49

 (49*16) + 0 = 784 + 0 = 748

 (748*16) + 7 = 12544 +7 = 1255110

• Convert the fractional portion by starting at the right end and
advancing to the left where "fracNum" is initially set to 0:

 fracNum = (fracNum + digit) / base;

• The final answer is the sum of the whole number and fractional parts.

EECC250 - ShaabanEECC250 - Shaaban
#6 Lec # 0 Winter99 11-29-99

Algorithm for Converting Between Arbitrary BasesAlgorithm for Converting Between Arbitrary Bases

• If the old base is base 10, then use the approach already
defined above for converting from base 10 to the new base.

• If the new base is base 10, then use the approach already
defined for converting from any base to base 10.

• If neither the old or new base is base 10, then:

– Convert from the current base to base 10.

– Convert from base 10 to the new base.

EECC250 - ShaabanEECC250 - Shaaban
#7 Lec # 0 Winter99 11-29-99

Binary to Hexadecimal ConversionBinary to Hexadecimal Conversion

• Separate the whole binary number portion into groups of
4 beginning at the decimal point and working to the left.
Add leading zeroes as necessary.

• Separate the fraction binary number portion into groups
of 4 beginning at the decimal (actually binary) point and
working to the right. Add trailing zeroes as necessary.

• Convert each group of 4 to the equivalent hexadecimal
digit.

• Example:

 3564.87510 = 1101 1110 1100.11102

 = (D * 162) + (E*161) + (C*160)+(E*16-1)

 = DEC.E16

EECC250 - ShaabanEECC250 - Shaaban
#8 Lec # 0 Winter99 11-29-99

Binary to Octal ConversionBinary to Octal Conversion
• Separate the whole binary number portion into groups of

3 beginning at the decimal point and working to the left.
Add leading zeroes as necessary.

• Separate the fraction binary number portion into groups of
3 beginning at the decimal (actually binary) point and
working to the right. Add trailing zeroes as necessary.

• Convert each group of 3 to the equivalent octal digit.

• Example:

 3564.87510 = 110 111 101 100.1112

 = (6 * 83) + (7*82) + (5*81)+(4*80)+(7*8-1)

 = 6754.78

EECC250 - ShaabanEECC250 - Shaaban
#9 Lec # 0 Winter99 11-29-99

Binary Coded Decimal (BCD)Binary Coded Decimal (BCD)

• Binary Coded Decimal (BCD) is a way to store decimal numbers
in binary. This technique uses 4 bits to store each digit from
from 0 to 9. For example:

 9810 = 1001 1000 in BCD

• BCD wastes storage since 4 bits are used to store 10 combinations
rather than the maximum possible 16.

• Arithmetic is more complex to implement in BCD.

• BCD is frequently used in calculators.

• Processors may have special instructions to aid BCD calculations.

EECC250 - ShaabanEECC250 - Shaaban
#10 Lec # 0 Winter99 11-29-99

Signed Binary NumbersSigned Binary Numbers
• Sign and Magnitude Representation:

– For an n-bit binary number:

 Use the first bit (most significant bit, MSB) position to
 represent the sign where 0 is positive and 1 is negative.

– Remaining n-1 bits represent the magnitude which may
range from:

 -2(n-1) + 1 to 2(n-1) - 1

– This scheme has two representations for 0; i.e., both
positive and negative 0: for 8 bits: 00000000, 10000000

– Arithmetic under this scheme uses the sign bit to indicate the
nature of the operation and the sign of the result, but the
sign bit is not used as part of the arithmetic.

EECC250 - ShaabanEECC250 - Shaaban
#11 Lec # 0 Winter99 11-29-99

Signed Binary NumbersSigned Binary Numbers
Complementary Representation:

– No sign digit or bit used

– The complement (negative representation) of an n-digit
number is defined as:

 basen - number

– To obtain two’s Complement representation of an n-bit
binary number:

 2n - number = 2n - 1 + number + 1

 = (1111…111) + number + 1

 or

– Invert each bit

– Add 1 to the result

EECC250 - ShaabanEECC250 - Shaaban
#12 Lec # 0 Winter99 11-29-99

Properties of Two's Complement NumbersProperties of Two's Complement Numbers
• X plus the complement of X equals 0.

• There is one unique 0.

• Positive numbers have 0 as their leading bit (MSB);
while negatives have 1 as their MSB.

• The range for an n-bit binary number in 2’s
complement representation is:

 from -2(n-1) to 2(n-1) - 1

• The complement of the complement of a number is the
original number.

• Subtraction is done by addition to the complement of
the number.

EECC250 - ShaabanEECC250 - Shaaban
#13 Lec # 0 Winter99 11-29-99

Examples of Two’s Complement AdditionExamples of Two’s Complement Addition

 Decimal Binary Hex

 21 = 00010101 = 0015
 - 11 = + 11110101 = + FFF5

 10 = 00001010 = 000A

 - 11 = 11110101 = FFF5
 - 21 = + 11101011 = + FFEB

 - 32 = 1 11100000 = FFE0

 Decimal Binary Hex

 11 = 00001011 = 000B
 + 21 = + 00010101 = + 0015

 32 = 00100000 = 0020

 11 = 00001011 = 000B
 - 21 = + 11101011 + FFEB

 - 10 = 11110110 = FFF6

For n = 8 bitsFor n = 8 bits

EECC250 - ShaabanEECC250 - Shaaban
#14 Lec # 0 Winter99 11-29-99

Two’s Complement Arithmetic OverflowTwo’s Complement Arithmetic Overflow
• Arithmetic overflow occurs with two's complement number addition if:

– The operands have the same sign (either positive or negative).

– The answer has a different sign.

• The overflow (V) may be represented algebraically by the following
equation:

 ____ ___ ___

 V = an-1 bn-1 sn-1 + an-1 bn-1 sn-1

• Consider 5-bit two's complement, the valid range of numbers is -16 to
+15. Consider the following overflow situations:

+12 01100
 +13 01101
------ --------
 11001 = -7

 -12 10100
 -13 10011
----- ---------
 00111 = +7

OverflowOverflow

EECC250 - ShaabanEECC250 - Shaaban
#15 Lec # 0 Winter99 11-29-99

What Values Can Be Represented in N Bits?What Values Can Be Represented in N Bits?
• Unsigned: 0 to 2N - 1
• 2s Complement: - 2 N-1 to 2 N-1 - 1

• 1s Complement: -2 N-1 +1 to 2 N-1 - 1
• BCD 0 to 10 N/4 - 1

• For 32 bits:
 Unsigned: 0 to 4,294,967,295
 2s Complement - 2,147,483,648 to 2,147,483,647
 2s Complement - 2,147,483,647 to 2,147,483,647
 BCD 0 to 99,999,999

• But, what about?
– Very large numbers?
 9,369,396,989,487,762,367,254,859,087,678
– . . . or very small number?
 0.0000000000000000000000000318579157

EECC250 - ShaabanEECC250 - Shaaban
#16 Lec # 0 Winter99 11-29-99

Scientific NotationScientific Notation

5.04 x 10 - 1.673 x 10
25 -24

Exponent

Radix (base)Mantissa

Decimal point

 Sign, Magnitude

 Sign, Magnitude

EECC250 - ShaabanEECC250 - Shaaban
#17 Lec # 0 Winter99 11-29-99

Representation of Floating Point Numbers inRepresentation of Floating Point Numbers in

 Single PrecisionSingle Precision IEEE 754 StandardIEEE 754 Standard

Example: 0 = 0 00000000 0 . . . 0 -1.5 = 1 01111111 10 . . . 0

Magnitude of numbers that
can be represented is in the range: 2

-126
(1.0) to 2

127 (2 - 2-23)

Which is approximately: 1.8 x 10
- 38 to 3.40 x 10 38

 0 < E < 255
Actual exponent is:
 e = E - 127

1 8 23
sign

exponent:
excess 127
binary integer
added

mantissa:
sign + magnitude, normalized
binary significand with
a hidden integer bit: 1.M

E MS

Value = N = (-1)S X 2 E-127 X (1.M)

EECC250 - ShaabanEECC250 - Shaaban
#18 Lec # 0 Winter99 11-29-99

Representation of Floating Point Numbers inRepresentation of Floating Point Numbers in

 Double PrecisionDouble Precision IEEE 754 StandardIEEE 754 Standard

Example: 0 = 0 00000000000 0 . . . 0 -1.5 = 1 01111111111 10 . . . 0

Magnitude of numbers that
can be represented is in the range: 2

-1022
 (1.0) to 2

1023 (2 - 2 - 52)

Which is approximately: 2.23 x 10
- 308 to 1.8 x 10 308

 0 < E < 2047
Actual exponent is:
 e = E - 1023

1 11 52
sign

exponent:
excess 1023
binary integer
added

mantissa:
sign + magnitude, normalized
binary significand with
a hidden integer bit: 1.M

E MS

Value = N = (-1)S X 2 E-1023 X (1.M)

EECC250 - ShaabanEECC250 - Shaaban
#19 Lec # 0 Winter99 11-29-99

IEEE 754 Special Number RepresentationIEEE 754 Special Number Representation

 Single Precision Double Precision Number Represented

Exponent Significand Exponent Significand

 0 0 0 0 0

 0 nonzero 0 nonzero Denormalized number

 1 to 254 anything 1 to 2046 anything Floating Point Number

 255 0 2047 0 Infinity

 255 nonzero 2047 nonzero NaN (Not A Number)

EECC250 - ShaabanEECC250 - Shaaban
#20 Lec # 0 Winter99 11-29-99

Basic Floating Point Addition AlgorithmBasic Floating Point Addition Algorithm

Addition (or subtraction) involves the following steps:

(1) Compute exponent difference: Ye - Xe

(2) Align binary point: right shift Xm that many positions to form Xm 2 Xe-Ye

(3) Compute sum of aligned mantissas: Xm2 Xe-Ye + Ym

(4) If normalization of result is needed, then a normalization step follows:

• Left shift result, decrement result exponent (e.g., 0.001xx…) or
• Right shift result, increment result exponent (e.g., 101.1xx…)

 Continue until MSB of data is 1 (NOTE: Hidden bit in IEEE Standard)

(5) If result mantissa is 0, may need to set the exponent to zero by a special step.

EECC250 - ShaabanEECC250 - Shaaban
#21 Lec # 0 Winter99 11-29-99

Overflow or
Underflow ?

Normalize the sum, either shifting right and
incrementing the exponent or shifting left
and decrementing the exponent

Generate exception
 or return error

Compare the exponents of the two numbers
shift the smaller number to the right until its
exponent matches the larger exponent

Start

Done

If mantissa =0
set exponent to 0

Add the significands (mantissas)

Floating Point
 Addition

(1)

(2)

(3)

(4)

(5)

EECC250 - ShaabanEECC250 - Shaaban
#22 Lec # 0 Winter99 11-29-99

Logical Operations on Binary Values: AND, ORLogical Operations on Binary Values: AND, OR

Bitwise AND operation of two
 numbers
Example: A AND B

 A 11011010 AND
 B 01001101
 = 01001000

A B A OR B
0 0 0
0 1 1
1 0 1
1 1 1

OR , +, ∨
A B A AND B
0 0 0
0 1 0
1 0 0
1 1 1

AND, *, ∧

Bitwise OR operation of two
 numbers
Example: A OR B

 A 11011010 OR
 B 01001101
 = 11011111

EECC250 - ShaabanEECC250 - Shaaban
#23 Lec # 0 Winter99 11-29-99

Logical Operations on Binary Values: XOR, NOT

A B A XOR B
0 0 0
0 1 1
1 0 1
1 1 0

Exclusive OR, EOR, XOR, ⊗

Bitwise XOR operation of two
 numbers
Example: A XOR B

 A 1101101 0 XOR
 B 01001101
 = 10010111

 __
NOT, ~, X

Inverts or complements a bit

Example:

 A = 1101100
 __
 A = 0010011

