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Number SystemsNumber Systems
• Standard positional representation of numbers:

    An unsigned number with  whole and fraction portions is
represented as:

The value of this number is given by:

• Where “b”  is the base of the number system (e.g 2, 8, 10,
16) and  “a”  is a digit that range from 0 to b-1

• The "radix point" is used to separate the whole number
from the fractional portion. In base 10, this is the decimal
point;  in base 2, the binary point.
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Number Systems Used in ComputersNumber Systems Used in Computers

Name
of Base

Base Set of Digits                      Example

Decimal b=10

b=2

b=16

b=10

a= {0,1,2,3,4,5,6,7,8,9}                            25510

Binary

a= {0,1,2,3,4,5,6,7}                                   3778

a= {0,1}                                              %111111112

a= {0,1,2,3,4,5,6,7,8,9,A, B, C, D, E, F}    $FF16

Octal

Hexadecimal

Binary    0000   0001  0010    0011   0100   0101  0110   0111  1000  1001   1010   1011  1100  1101  1110  1111   

Hex         0    1     2     3     4      5     6      7     8     9     A     B     C    D    E    F

Decimal    0    1     2     3     4      5     6      7     8     9    10    11    12   13   14   15
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Converting from Decimal to BinaryConverting from Decimal to Binary
An Example:An Example:
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Algorithm for Converting from Decimal to Any BaseAlgorithm for Converting from Decimal to Any Base
• Separate the number into its whole number (wholeNum) and fractional

(fracNum) portions.

• Convert the whole number portion by repeating the following until
"wholeNum" is 0:

digit = wholeNum % base;

wholeNum /= base;

• Convert the fractional portion by repeating the following  until "fracNum"
is  0 or sufficient precision has been reached:

       fracNum *= base;

       digit = (int)base;

       fracNum -= base;

• The final answer is the whole number and fractional  computation result
separated by a radix point.

The "digit" resulting from each step is the
next digit under  the new base starting
with position 0 to the left of the   decimal
point.

The "digit" resulting from each step is
the next digit under  the new base
starting with position 0 to the right of
the  decimal point.
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Algorithm for Converting from Any Base to DecimalAlgorithm for Converting from Any Base to Decimal
• Separate the number into its whole number (wholeNum) and

fractional (fracNum) portions.

• Convert the whole number portion by starting at the  left end
advancing to the right where "wholeNum" is  initially set to 0:

                     wholeNum  =  wholeNum * base + digit

–  Example:   310716   to   decimal

                    0          +3  =  0  +  3  =  3

                (3*16)      +  1  =  48 +  1 =  49

              (49*16)     +  0   =  784 + 0 =  748

            (748*16)      + 7   =  12544 +7 =  1255110

• Convert the fractional portion by starting at the   right end and
advancing to the left where "fracNum" is  initially set to 0:

                  fracNum  =  (fracNum + digit) / base;

• The final answer is the sum of the whole number and  fractional parts.
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Algorithm for Converting Between Arbitrary BasesAlgorithm for Converting Between Arbitrary Bases

• If the old base is base 10, then use the approach already
defined above for converting from base 10 to the new base.

• If the new base is base 10, then use the approach already
defined for converting from any base to base 10.

•  If neither the old or new base is base 10, then:

– Convert from the current base to base 10.

– Convert from base 10 to the new base.
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Binary to Hexadecimal ConversionBinary to Hexadecimal Conversion

• Separate the whole binary number portion into groups of
4 beginning at the decimal point and working to the left.
Add leading zeroes as necessary.

• Separate the fraction binary number portion into groups
of  4  beginning at the decimal (actually binary) point and
working to the right.  Add trailing zeroes as necessary.

• Convert each group of  4  to the equivalent hexadecimal
digit.

• Example:

           3564.87510  =   1101 1110 1100.11102

                              =   (D * 162) + (E*161) + (C*160)+(E*16-1)

                              =   DEC.E16
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Binary to Octal ConversionBinary to Octal Conversion
• Separate the whole binary number portion into groups of

3  beginning at the decimal point and working to the left.
Add leading zeroes as necessary.

• Separate the fraction binary number portion into groups of
3  beginning at the decimal (actually binary) point and
working to the right.  Add trailing zeroes as necessary.

• Convert each group of  3  to the equivalent  octal digit.

• Example:

           3564.87510  =  110 111 101 100.1112

                               =  (6 * 83) + (7*82) + (5*81)+(4*80)+(7*8-1)

                              =   6754.78



EECC250 - ShaabanEECC250 - Shaaban
#9   Lec # 0   Winter99  11-29-99

Binary Coded Decimal (BCD)Binary Coded Decimal (BCD)

• Binary Coded Decimal (BCD) is a way to store decimal numbers
in binary.  This technique uses 4 bits to store each digit from
from 0 to  9. For example:

                                9810   =   1001 1000    in  BCD

• BCD wastes storage since 4 bits are used to store 10 combinations
rather than the maximum possible 16.

• Arithmetic is more complex to implement in  BCD.

•  BCD is frequently used in calculators.

• Processors may have special instructions to aid BCD calculations.
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Signed Binary NumbersSigned Binary Numbers
• Sign and Magnitude Representation:

– For an n-bit binary number:

    Use the first bit (most significant bit, MSB) position to
    represent the sign where 0 is positive and 1 is negative.

– Remaining  n-1  bits represent the magnitude which may
range from:

                              -2(n-1) + 1   to   2(n-1) - 1

– This scheme  has two representations for  0; i.e., both
positive and negative  0:   for  8 bits:   00000000,  10000000

– Arithmetic under this scheme uses the sign bit to indicate the
nature of the operation and the sign of the result, but the
sign bit is not used as part of the arithmetic.
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Signed Binary NumbersSigned Binary Numbers
Complementary Representation:

– No sign digit or bit used

– The complement (negative representation) of an n-digit
number is defined as:

                                basen  - number

– To obtain two’s Complement representation of an n-bit
binary number:

                   2n - number  =  2n  - 1  +   number +  1

                                          =  (1111…111)  +  number  +  1

       or

– Invert each bit

– Add  1  to the result
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Properties of Two's Complement NumbersProperties of Two's Complement Numbers
• X  plus the complement of  X equals  0.

• There is one unique  0.

• Positive numbers have  0  as their leading bit (MSB);
while negatives have 1 as their MSB.

• The range for an n-bit binary number in 2’s
complement representation  is:

                         from    -2(n-1)   to   2(n-1) - 1

• The complement of the complement of a number is the
original number.

• Subtraction is done by addition to the complement of
the number.
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Examples of Two’s Complement AdditionExamples of Two’s Complement Addition

   Decimal            Binary                   Hex

       21     =       00010101  =           0015
     - 11     =   +  11110101  =     +  FFF5

        10     =       00001010  =          000A

     - 11    =       11110101   =        FFF5
     - 21    =   + 11101011   =    + FFEB

     - 32    =   1 11100000   =        FFE0

  Decimal          Binary              Hex

     11    =      00001011   =       000B
  + 21    =   + 00010101   =    + 0015

     32    =      00100000   =       0020

    11   =       00001011   =       000B
  - 21   =    + 11101011       + FFEB

  - 10   =     11110110   =       FFF6

For  n = 8  bitsFor  n = 8  bits
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Two’s Complement Arithmetic OverflowTwo’s Complement Arithmetic Overflow
• Arithmetic overflow occurs with two's complement number addition if:

– The operands have the same sign (either positive or negative).

– The answer has a different sign.

• The overflow (V) may be represented algebraically by the following
equation:

                                                    ____   ___                                            ___

                       V = an-1 bn-1 sn-1   +   an-1 bn-1 sn-1

• Consider 5-bit two's complement, the valid range of numbers is  -16  to
+15.   Consider the following overflow situations:

+12     01100
 +13    01101
------   --------
           11001 = -7

 -12      10100
 -13      10011
-----     ---------
            00111 = +7

OverflowOverflow
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What Values Can Be Represented in N Bits?What Values Can Be Represented in N Bits?
• Unsigned: 0       to 2N  - 1
• 2s Complement:     - 2 N-1       to 2 N-1 - 1

• 1s Complement: -2 N-1 +1       to 2 N-1 - 1
• BCD 0       to 10 N/4 - 1

• For 32 bits:
          Unsigned: 0        to 4,294,967,295
   2s Complement - 2,147,483,648          to 2,147,483,647
   2s Complement - 2,147,483,647          to 2,147,483,647
          BCD 0       to 99,999,999

• But, what about?
– Very large numbers?
                9,369,396,989,487,762,367,254,859,087,678
– .  .  . or very small number?
                0.0000000000000000000000000318579157
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Scientific NotationScientific Notation

5.04 x 10                                 -  1.673 x 10
25   -24

Exponent

Radix (base)Mantissa

Decimal point

     Sign,        Magnitude

  Sign,   Magnitude
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Representation of Floating Point Numbers inRepresentation of Floating Point Numbers in

  Single PrecisionSingle Precision      IEEE 754 StandardIEEE 754 Standard

Example:    0  =  0 00000000 0 . . . 0             -1.5 = 1 01111111 10 . . . 0

Magnitude of numbers that 
can be represented is in the range: 2

-126
(1.0) to 2

127 (2 - 2-23  )

Which is approximately: 1.8 x 10
- 38 to 3.40 x 10 38

     0  <  E  < 255
Actual exponent is:
    e  =  E - 127

1 8 23
sign

exponent:
excess 127
binary integer
added

mantissa:
sign + magnitude, normalized
binary significand with 
a hidden integer bit:  1.M

E MS

Value = N = (-1)S   X  2 E-127  X  (1.M)
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Representation of Floating Point Numbers inRepresentation of Floating Point Numbers in

  Double PrecisionDouble Precision      IEEE 754 StandardIEEE 754 Standard

Example:    0  =  0 00000000000 0 . . . 0          -1.5 = 1 01111111111 10 . . . 0

Magnitude of numbers that 
can be represented is in the range: 2

-1022
  (1.0) to 2

1023  (2 - 2  - 52    )

Which is approximately: 2.23 x 10
- 308  to 1.8 x 10 308

    0 <  E  <  2047
Actual exponent is:
    e  =  E - 1023

1 11 52
sign

exponent:
excess 1023
binary integer
added

mantissa:
sign + magnitude, normalized
binary significand with 
a hidden integer bit:  1.M

E MS

Value = N = (-1)S   X  2 E-1023  X  (1.M)
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IEEE 754  Special Number RepresentationIEEE 754  Special Number Representation

     Single Precision    Double Precision  Number Represented

Exponent    Significand       Exponent     Significand

       0                   0                       0                   0                                      0

       0              nonzero                 0        nonzero               Denormalized number

 1 to 254        anything          1 to 2046       anything            Floating Point Number

     255                 0                      2047                0                                Infinity

     255            nonzero               2047            nonzero               NaN (Not A Number)
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Basic Floating Point Addition AlgorithmBasic Floating Point Addition Algorithm

Addition (or subtraction) involves the following steps:

(1)  Compute exponent difference:   Ye - Xe

(2)  Align binary point: right shift Xm that many positions to form Xm 2 Xe-Ye

(3)  Compute sum of aligned mantissas:     Xm2 Xe-Ye + Ym

(4)  If normalization of result is needed, then a normalization step  follows:

•  Left shift result, decrement result exponent   (e.g., 0.001xx…)  or
•  Right shift result, increment result exponent (e.g., 101.1xx…)

        Continue until MSB of data is 1   (NOTE: Hidden bit in IEEE Standard)

(5)  If result  mantissa  is 0, may need to set the exponent to zero by a special step.
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Overflow or
Underflow ?

Normalize the sum, either shifting right and
incrementing the exponent or shifting left
and decrementing the exponent

Generate exception
  or return error

Compare the exponents of the two numbers
shift the smaller number to the right until its
exponent matches the larger exponent 

Start

Done

If mantissa =0
set exponent to 0

Add the significands (mantissas)

Floating Point
    Addition

(1)

(2)

(3)

(4)

(5)
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Logical Operations on Binary Values:  AND, ORLogical Operations on Binary Values:  AND, OR

Bitwise  AND  operation of two
 numbers
Example:         A   AND  B

                   A    11011010    AND
                   B     01001101
                    =    01001000

A    B    A   OR   B
0     0             0
0     1             1
1     0             1
1     1             1

OR ,   +,   ∨
A    B    A   AND  B
0     0             0
0     1             0
1     0             0
1     1             1

AND,  *,   ∧

Bitwise  OR  operation of two
 numbers
Example:          A  OR  B

                      A    11011010     OR
                      B     01001101
                      =     11011111
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Logical Operations on Binary Values:  XOR, NOT

A    B   A   XOR   B
0     0             0
0     1             1
1     0             1
1     1             0

Exclusive OR, EOR,  XOR,   ⊗

Bitwise  XOR  operation of two
 numbers
Example:     A   XOR   B

                  A     1101101 0    XOR
                  B      01001101
                  =      10010111

                 __
NOT,  ~,   X

Inverts or complements a bit

Example:
  
      A =   1101100
     __
      A =    0010011


