
EECC250 - Shaaban
#1 lec #7 Winter99 12-17-99

Local workspace of a subroutine:Local workspace of a subroutine:
A number of temporary memory locations required by the
subroutine for temporary private variables used in addition
to available data registers.

Recursion and recursive subroutines:Recursion and recursive subroutines:
Recursion involves defining the solution of a problem in
terms of itself. A recursive subroutine is one that calls itself.

Re-entrant subroutines:Re-entrant subroutines:
In multi-tasking systems, a subroutine is re-entrant if more
than one task or process are allowed to use (call) the
subroutine simultaneously without any ill effects.

EECC250 - Shaaban
#2 lec #7 Winter99 12-17-99

The Stack and Local SubroutineThe Stack and Local Subroutine
Variables: Stack FramesVariables: Stack Frames

• In order for a subroutine to be recursive or re-entrant , the
subroutine’s local workspace must be attached to each use or call
of the subroutine.

• A stack frame (SF) of size d bytes is defined as a region of
temporary storage in memory of size d bytes at the top of the
current stack.

• Upon creating a stack frame:

– The frame pointer (FP) points to the bottom of the stack frame.
Register A6 is normally used as the frame pointer.

– The stack pointer, SP is updated to point to the top of the frame.

• In 68000 assembly, the LINK and UNLK instructions are used to
facilitate the creation/destruction of local subroutine storage using
stack frames.

EECC250 - Shaaban
#3 lec #7 Winter99 12-17-99

 Example: Factorial Using IterationExample: Factorial Using Iteration

FactorI MOVE.L D0,-(SP) Save the initial value of D0

 MOVE.W D0,D1 Set the result to the input value

Loop SUBQ.W #1,D0 WHILE N > 1

 BEQ Exit N = N - 1

 MULU D0,D1 Factorial_N = N * Factorial_N

 BRA Loop

Exit MOVE.L (SP)+,D0 Restore the value of D0

 RTS

Factorial(N)
 If N = 1 THEN
 Factorial(N) := 1
 ELSE
 Factorial(N) = N * Factorial(N-1)
 ENDIF

The factorial of a positive integer is defined as:
 n! = n x (n-1) x (n-2) x (n-3) x x 1

Pseudo code:

Assembly Subroutine using iteration:

Computation:

EECC250 - Shaaban
#4 lec #7 Winter99 12-17-99

Factorial Using RecursionFactorial Using Recursion
• Assembly program to compute factorial of a number using

recursive subroutine calls.

• Subroutine parameter passing: by value via data registers.

Main program:

ORG $1000

MAIN MOVE.W NUMB,D0 get number

 JSR FACTOR go to factorial routine

 MOVE.W D0,F_NUMB store result

STOP #$2700

ORG $2000

NUMB DC.W 5 number to be factorialized

F_NUMB DS.W 1 factorial of number

EECC250 - Shaaban
#5 lec #7 Winter99 12-17-99

Factorial Using Recursion: Factorial Using Recursion: SubroutineSubroutine
* Initial conditions: D0.W = number to compute factorial of

* where 0 < D0.W < 9 (range to avoid overflow)

* Final conditions: D0.W = factorial of input number

* Register usage: D0.W destructively used

* Sample case: Input: D0.W = 5

* Output: D0.W = 120

FACTOR MOVE.W D0,-(SP) push input number onto stack

SUBQ.W #1,D0 decrement number

 BNE F_CONT reached 1 yet?

 MOVE.W (SP)+,D0 yes: factorial = 1

 RTS return

F_CONT JSR FACTOR no: recursively call FACTOR

 MULU (SP)+,D0 multiply only after stack

* contains all numbers

RETURN RTS

EECC250 - Shaaban
#6 lec #7 Winter99 12-17-99

Factorial UsingFactorial Using
Recursion Example:Recursion Example:

Effect On StackEffect On Stack

EECC250 - Shaaban
#7 lec #7 Winter99 12-17-99

Creating A Stack Frame of Size Creating A Stack Frame of Size d d BytesBytes
Word

 Stack just after
a subroutine call

Current SP
 A7

 Passed
Parameters

 Return
 Address

Stack just after creating
a stack frame of size d
by the subroutine

LEA -4(SP),A6
LEA -d(SP),SP

d

Current FP
 A6

 Passed
Parameters

 Return
 Address

Current SP
 A7

Stack
Frame

EECC250 - Shaaban
#8 lec #7 Winter99 12-17-99

Destroying A Stack FrameDestroying A Stack Frame

Current FP
 A6

 Passed
Parameters

 Return
 Address

Current SP
 A7

Stack
Frame

Word

Stack after
destroying the
stack frame

Current SP
 A7

 Passed
Parameters

 Return
 Address

LEA d(SP),SP

d

EECC250 - Shaaban
#9 lec #7 Winter99 12-17-99

 LINK An,-# d
• Allocates or creates a frame in the stack for local use by the subroutine

of size d bytes.

• An is an address register serving as the frame pointer (FP); A6 is used.

• Function:
– Push the contents of address register An onto the stack. (includes pre-

decrementing SP by 4).
– Save the stack pointer in An (An points to bottom of frame)
– Decrement the stack pointer by d (points to the top of the frame)
– Similar in functionality to the following instruction sequence:

MOVEA.L A6,-(SP)

LEA (SP),A6

LEA -d(SP),SP

• After creating the frame:
– Passed parameters are accessed with a positive displacement with respect to

FP, A6 i.e MOVE.W 8(A6),D0

– Local temporary storage variables are accessed with negative displacement
with respect to A6 i.e. MOVE.L D2,-10(A6)

LINK Instruction

EECC250 - Shaaban
#10 lec #7 Winter99 12-17-99

LINK Instruction OperationLINK Instruction Operation

Word

 Stack just after
a subroutine call
 before LINK

Current SP
 A7

 Passed
Parameters

 Return
 Address

Current FP
 A6

 Passed
Parameters

 Return
 Address

Current SP
 A7

dStack
Frame

original
 A6

LINK A6,- # d

EECC250 - Shaaban
#11 lec #7 Winter99 12-17-99

UNLK UNLK UNLinK UNLinK InstructionInstruction
UNLK An

• Deallocates or destroys a stack frame. Where An is the address
register used as frame pointer (FP); usually A6

• Function:

– Restore the stack pointer to the value in address register An
–

 i.e SP = An or SP = SP + d

– Restore register An by popping its value from the stack.

 (includes post-incrementing SP by 4).

Similar in functionality to the following instruction sequence:

 LEA d(SP),SP

 MOVEA.L (SP)+,An

EECC250 - Shaaban
#12 lec #7 Winter99 12-17-99

UNLK Instruction OperationUNLK Instruction Operation

Current FP
 A6

 Passed
Parameters

 Return
 Address

Current SP
 A7

dStack
Frame

original
 A6

Word

 Stack just after
 UNLINK A6

Current SP
 A7

 Passed
Parameters

 Return
 Address

UNLK A6

A6

EECC250 - Shaaban
#13 lec #7 Winter99 12-17-99

Example: UsingExample: Using
A Stack Frame FPA Stack Frame FP

MOVE.W D0,-(SP) Push parameter #1 onto the stack

MOVE.W D1,-(SP) Push parameter #2 onto the stack

JSR SBRT Jump to subroutine SBRT

SBRT LINK A6,-#$8 Establish FP and local storage

 . . .

MOVE.W 10(A6),D5 Retrieve parameter #1

 . . .

MOVE.W D4,-4(A6) local write to stack frame

 . . .

 UNLK A6 Deallocate stack frame

RTS

A segment of a main calling program:

A segment of a subroutine using a stack frame for local storage:

EECC250 - Shaaban
#14 lec #7 Winter99 12-17-99

SF Example:
Effect On Stack

A6
LINK A6,-#$8

EECC250 - Shaaban
#15 lec #7 Winter99 12-17-99

The Effect of MultipleThe Effect of Multiple
Subroutine Calls onSubroutine Calls on

Frame Pointers WhenFrame Pointers When
Using Local StorageUsing Local Storage

