
EECC250 - ShaabanEECC250 - Shaaban
#1 lec #22 Winter99 2-16-2000

The Von-The Von-NeumannNeumann Computer Model Computer Model
• Partitioning of the computing engine into components:

– Central Processing Unit (CPU): Control Unit (instruction decode, sequencing
of operations), Datapath (registers, arithmetic and logic unit, buses).

– Memory: Instruction and operand storage.
– Input/Output (I/O).

– The stored program concept: Instructions from an instruction set are
fetched from a common memory and executed one at a time.

-
Memory

(instructions,
 data)

Control

Datapath
registers
ALU, buses

 CPUComputer System

Input

Output

I/O Devices

EECC250 - ShaabanEECC250 - Shaaban
#2 lec #22 Winter99 2-16-2000

Hardware Components of Any ComputerHardware Components of Any Computer

 Processor
 (active)

Computer

Control
Unit

Datapath

Memory
(passive)

(where
programs,
data
live when
running)

Devices

Input

Output

Keyboard,
Mouse, etc.

Display,
Printer, etc.

Disk

Five classic components of all computers:Five classic components of all computers:

 1. Control Unit; 2. 1. Control Unit; 2. Datapath Datapath; 3. Memory; 4. Input; 5. Output; 3. Memory; 4. Input; 5. Output}

Processor

EECC250 - ShaabanEECC250 - Shaaban
#3 lec #22 Winter99 2-16-2000

CPU OrganizationCPU Organization
• Datapath Design:

– Capabilities & performance characteristics of principal
Functional Units (FUs):

– (e.g., Registers, ALU, Shifters, Logic Units, ...)
– Ways in which these components are interconnected (buses

connections, multiplexors, etc.).
– How information flows between components.

• Control Unit Design:
– Logic and means by which such information flow is controlled.

– Control and coordination of FUs operation to realize the targeted
Instruction Set Architecture to be implemented (can either be
implemented using a finite state machine or a microprogram).

• Hardware description with a suitable language, possibly
using Register Transfer Notation (RTN).

EECC250 - ShaabanEECC250 - Shaaban
#4 lec #22 Winter99 2-16-2000

Hardware DescriptionHardware Description
• Hardware visualization:

– Block diagrams (spatial visualization):
 Two-dimensional representations of functional units and their

interconnections.
– Timing charts (temporal visualization):
 Waveforms where events are displayed vs. time.

• Register Transfer Notation (RTN):
– A way to describe microoperations capable of being performed

by the data flow (data registers, data buses, functional units) at
the register transfer level of design (RT).

– Also describes conditional information in the system which
cause operations to come about.

– A “shorthand” notation for microoperations.

• Hardware Description Languages:
– Examples: VHDL: VHSIC (Very High Speed Integrated

Circuits) Hardware Description Language, Verilog.

EECC250 - ShaabanEECC250 - Shaaban
#5 lec #22 Winter99 2-16-2000

Register Transfer Notation (RTN)Register Transfer Notation (RTN)
• Dependent RTN: When RTN is used after the data flow is

assumed to be frozen. No data transfer can take place over a
path that does not exist. No statement implies a function the
data flow hardware is incapable of performing.

• Independent RTN: Describe actions on registers without
regard to nonexistence of direct paths or intermediate
registers. No predefined data flow.

• The general format of an RTN statement:

 Conditional information: Action1; Action2

• The conditional statement is often an AND of literals (status
and control signals) in the system (a p-term). The p-term
is said to imply the action.

• Possible actions include transfer of data to/from
registers/memory data shifting, functional unit
operations etc.

EECC250 - ShaabanEECC250 - Shaaban
#6 lec #22 Winter99 2-16-2000

RTN Statement ExamplesRTN Statement Examples
A ← B

– A copy of the data in entity B (typically a register) is
placed in Register A

– If the destination register has fewer bits than the source,
the destination accepts only the lowest-order bits.

– If the destination has more bits than the source, the value
of the source is sign extended to the left.

CTL • T0: A = B
– The contents of B are presented to the input of

combinational circuit A
– This action to the right of “:” takes place when control

signal CTL is active and signal T0 is active.

EECC250 - ShaabanEECC250 - Shaaban
#7 lec #22 Winter99 2-16-2000

RTN Statement ExamplesRTN Statement Examples
MD ← M[MA]

– Memory locations are indicated by square brackets.
– Means the memory data register receives the contents of the

main memory (M) as addressed from the Memory Address
(MA) register.

AC(0), AC(1), AC(2),AC(3)
– Register fields are indicated by parenthesis.
– The concatenation operation is indicated by a comma.

– Bit AC(0) is bit 0 of the accumulator AC
– The above expression means AC bits 0, 1, 2, 3
– More commonly represented by AC(0-3)

E • T3: CLRWRITE
– The control signal CLRWRITE is activated when the

condition E • T3 is active.

EECC250 - ShaabanEECC250 - Shaaban
#8 lec #22 Winter99 2-16-2000

CPU Design StepsCPU Design Steps
1. Analyze instruction set operations using independent

RTN => datapath requirements.

2. Select set of datapath components & establish clock
methodology.

3. Assemble datapath meeting the requirements.

4. Analyze implementation of each instruction to determine
setting of control points that effects the register transfer.

5. Assemble the control logic.

EECC250 - ShaabanEECC250 - Shaaban
#9 lec #22 Winter99 2-16-2000

Instruction Processing StepsInstruction Processing Steps

Obtain instruction from program storage

Determine instruction type

Obtain operands from registers

Compute result value or status

Store result in register/memory if needed

(usually called Write Back).

Update program counter to address

of next instruction } Common
steps
for all
instructions

Instruction

Fetch

Instruction

Decode

Execute

Result

Store

Next

Instruction

EECC250 - ShaabanEECC250 - Shaaban
#10 lec #22 Winter99 2-16-2000

A Subset of MIPS InstructionsA Subset of MIPS Instructions
ADD and SUB:

addU rd, rs, rt
subU rd, rs, rt

OR Immediate:

ori rt, rs, imm16

LOAD and STORE Word

lw rt, rs, imm16
sw rt, rs, imm16

BRANCH:

 beq rs, rt, imm16

op rs rt rd shamt funct

061116212631

6 bits 6 bits5 bits5 bits5 bits5 bits

op rs rt immediate

016212631

6 bits 16 bits5 bits5 bits

op rs rt immediate

016212631

6 bits 16 bits5 bits5 bits

op rs rt immediate

016212631

6 bits 16 bits5 bits5 bits

EECC250 - ShaabanEECC250 - Shaaban
#11 lec #22 Winter99 2-16-2000

Overview of MIPS Instruction Micro-operationsOverview of MIPS Instruction Micro-operations
• All instructions go through these two steps:

– Send program counter to instruction memory and fetch the
instruction. (fetch)

– Read one or two registers, using instruction fields. (decode)
• Load reads one register only.

• Additional instruction execution actions (execution) depend on the
instruction in question, but similarities exist:
– All instruction classes use the ALU after reading the registers:

• Memory reference instructions use it for address calculation.
• Arithmetic and logic instructions (R-Type), use it for the

specified operation.

• Branches use it for comparison.
• Additional execution steps where instruction classes differ:

– Memory reference instructions: Access memory for a load or store.

– Arithmetic and logic instructions: Write ALU result back in register.
– Branch instructions: Change next instruction address based on

comparison.

EECC250 - ShaabanEECC250 - Shaaban
#12 lec #22 Winter99 2-16-2000

 Datapath Datapath ComponentsComponents

Two state elements needed to store and access instructions:
1 Instruction memory:
• Only read access.
• No read control signal.

2 Program counter: 32-bit register.
• Written at end of every clock cycle: No write control signal.
• 32-bit Adder: To compute the the next instruction address.

Instruction
Word

EECC250 - ShaabanEECC250 - Shaaban
#13 lec #22 Winter99 2-16-2000

MoreMore Datapath Datapath Components Components

Register File:
• Contains all registers.
• Two read ports and one write port.
• Register writes by asserting write control signal
• Writes are edge-triggered.
• Can read and write to the same register in the
 same clock cycle.

Register File Main ALU

EECC250 - ShaabanEECC250 - Shaaban
#14 lec #22 Winter99 2-16-2000

Instruction Word ← Mem[PC] Fetch the instruction

PC ← PC + 4 Increment PC

R[rd] ← R[rs] + R[rt] Add register rs to register rt result
in register rd

R-Type Example:R-Type Example:
Micro-Operation Sequence For ADDUMicro-Operation Sequence For ADDU

OP rs rt rd shamt funct

6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

addU rd, rs, rt

EECC250 - ShaabanEECC250 - Shaaban
#15 lec #22 Winter99 2-16-2000

Building The DatapathBuilding The Datapath

Portion of the datapath
used for fetching instructions
and incrementing the program
counter.

Instruction Fetch
& PC Update:

EECC250 - ShaabanEECC250 - Shaaban
#16 lec #22 Winter99 2-16-2000

Instruction Word ← Mem[PC] Fetch the instruction

PC ← PC + 4 Increment PC

R[rt] ← R[rs] OR ZeroExt[imm16] OR register rs with immediate
field zero extended to 32 bits,
result in register rt

Logical Operations with Immediate Example Example::
Micro-Operation Sequence For ORIMicro-Operation Sequence For ORI

op rs rt immediate

016212631

6 bits 16 bits5 bits5 bits

ori rt, rs, imm16

EECC250 - ShaabanEECC250 - Shaaban
#17 lec #22 Winter99 2-16-2000

DatapathDatapath For Logical For Logical
Instructions With ImmediateInstructions With Immediate

32

Result

ALUctr

Clk

busW

RegWr

32

32

busA

32

busB

5 5 5

Rw Ra Rb

32 32-bit
Registers

Rs

RtRd
RegDst

Z
eroE

xt

M
ux

Mux

3216
imm16

ALUSrc

A
L

U

EECC250 - ShaabanEECC250 - Shaaban
#18 lec #22 Winter99 2-16-2000

Instruction Word ← Mem[PC] Fetch the instruction

PC ← PC + 4 Increment PC

R[rt] ← Mem[R[rs] + SignExt[imm16]] Immediate field sign extended to
32 bits and added to register rs
to form memory load address,

word at load address to register rt

Load Operations ExampleExample::
Micro-Operation Sequence For LWMicro-Operation Sequence For LW

op rs rt immediate

016212631

6 bits 16 bits5 bits5 bits

lw rt, rs, imm16

EECC250 - ShaabanEECC250 - Shaaban
#19 lec #22 Winter99 2-16-2000

AdditionalAdditional Datapath Datapath Components For Components For
Loads & StoresLoads & Stores

Inputs for address and write (store)
data
Output for read (load) result

16-bit input sign-extended
into a 32-bit value at the output

EECC250 - ShaabanEECC250 - Shaaban
#20 lec #22 Winter99 2-16-2000

Datapath Datapath For LoadsFor Loads

32

ALUctr

Clk

busW

RegWr

32

32

busA

32

busB

5 5 5

Rw Ra Rb

32 32-bit
Registers

Rs

RtRd

RegDst

E
xtender

M
ux

Mux

32
16

imm16

ALUSrc

ExtOp

Clk

Data In
WrEn

32

Adr

Data
Memory

32

A
L

U
MemWr M

ux

W_Src

EECC250 - ShaabanEECC250 - Shaaban
#21 lec #22 Winter99 2-16-2000

Instruction Word ← Mem[PC] Fetch the instruction

PC ← PC + 4 Increment PC

Mem[R[rs] + SignExt[imm16]] ← R[rt] Immediate field sign extended to
32 bits and added to register rs
to form memory store address,
register rt written to memory
at store address.

Store Operations ExampleExample::
Micro-Operation Sequence For SWMicro-Operation Sequence For SW

op rs rt immediate

016212631

6 bits 16 bits5 bits5 bits

sw rt, rs, imm16

EECC250 - ShaabanEECC250 - Shaaban
#22 lec #22 Winter99 2-16-2000

Datapath Datapath For StoresFor Stores

ALUSrcExtOp

32

ALUctr

Clk

busW

RegWr

32

32

busA

32

busB

55 5

Rw Ra Rb
32 32-bit
Registers

Rs

Rt

Rt

Rd

RegDst

E
xtender

M
ux

Mux

3216
imm16

Clk

Data In
WrEn

32

Adr

Data
Memory

MemWr

A
L

U

32

M
ux

W_Src

EECC250 - ShaabanEECC250 - Shaaban
#23 lec #22 Winter99 2-16-2000

Instruction Word ← Mem[PC] Fetch the instruction

PC ← PC + 4 Increment PC

Equal ← R[rs] == R[rt] Calculate the branch condition

if (COND eq 0)

 PC ← PC + 4 + (SignExt(imm16) x 4) Calculate the next instruction’s PC
else address

 PC ← PC + 4

Conditional Branch ExampleExample::
Micro-Operation Sequence For BEQMicro-Operation Sequence For BEQ

op rs rt immediate

016212631

6 bits 16 bits5 bits5 bits

beq rs, rt, imm16

EECC250 - ShaabanEECC250 - Shaaban
#24 lec #22 Winter99 2-16-2000

Datapath For
Branch Instructions

ALU to evaluate branch condition
Adder to compute branch target:

• Sum of incremented PC and the
 sign-extended lower 16-bits on the
 instruction.

EECC250 - ShaabanEECC250 - Shaaban
#25 lec #22 Winter99 2-16-2000

Combining The Datapaths For MemoryCombining The Datapaths For Memory
Instructions and R-Type InstructionsInstructions and R-Type Instructions

Highlighted muliplexors and connections added to combine the datapaths
of memory and R-Type instructions into one datapath

EECC250 - ShaabanEECC250 - Shaaban
#26 lec #22 Winter99 2-16-2000

Instruction Fetch Datapath Added toInstruction Fetch Datapath Added to
ALU R-Type and Memory Instructions DatapathALU R-Type and Memory Instructions Datapath

EECC250 - ShaabanEECC250 - Shaaban
#27 lec #22 Winter99 2-16-2000

A Simple Datapath For The MIPS ArchitectureA Simple Datapath For The MIPS Architecture
Datapath of branches and a program counter multiplexor are added.
Resulting datapath can execute in a single cycle the basic MIPS instruction:

 - load/store word - ALU operations - Branches

EECC250 - ShaabanEECC250 - Shaaban
#28 lec #22 Winter99 2-16-2000

Single Cycle MIPS DatapathSingle Cycle MIPS Datapath
Necessary multiplexors and control lines are identified here:

EECC250 - ShaabanEECC250 - Shaaban
#29 lec #22 Winter99 2-16-2000

Instruction Word ← Mem[PC] Fetch the instruction

PC ← PC + 4 Increment PC

PC ← PC(31-28),jump_target,00 Update PC with jump address

Adding Support For Jump::
Micro-Operation Sequence For Jump: JMicro-Operation Sequence For Jump: J

OP Jump_target

6 bits 26 bits

j jump_target

EECC250 - ShaabanEECC250 - Shaaban
#30 lec #22 Winter99 2-16-2000

Datapath For JumpDatapath For Jump

32

P
C

Clk

00M
ux

nPC_sel

imm16

A
dder

A
dder

4

P
C

 E
xt

Next Instruction Address

M
ux

JUMP

Shift left 2jump_target

Instruction(15-0)

Instruction(25-0)

32

26

PC+4(31-28)

28 32

4

32

EECC250 - ShaabanEECC250 - Shaaban
#31 lec #22 Winter99 2-16-2000

RegDst ALUctrALUSrc MemtoReg Equal

Instruction<31:0>

<
21:25>

<
16:20>

<
11:15>

<
0:15>

Imm16RdRsRt

Adr

Instruction
Memory

DATA PATHDATA PATH

ExtOp MemWr

Control UnitControl Unit

Op

<
21:25>

Fun

nPC_sel RegWr

<
0:25>

Jump_target

Jump

EECC250 - ShaabanEECC250 - Shaaban
#32 lec #22 Winter99 2-16-2000

Single Cycle MIPS Datapath Extended To HandleSingle Cycle MIPS Datapath Extended To Handle
Jump with Control Unit AddedJump with Control Unit Added

EECC250 - ShaabanEECC250 - Shaaban
#33 lec #22 Winter99 2-16-2000

Control Signal GenerationControl Signal Generation

add sub ori lw sw beq jump

RegDst

ALUSrc

MemtoReg

RegWrite

MemWrite

nPCsel

Jump

ExtOp

ALUctr<2:0>

1

0

0

1

0

0

0

x

Add

1

0

0

1

0

0

0

x

Subtract

0

1

0

1

0

0

0

0

Or

0

1

1

1

0

0

0

1

Add

x

1

x

0

1

0

0

1

Add

x

0

x

0

0

1

0

x

Subtract

x

x

x

0

0

0

1

x

xxx

func

op 00 0000 00 0000 00 1101 10 0011 10 1011 00 0100 00 0010

10 0000 10 0010 Don’t Care

EECC250 - ShaabanEECC250 - Shaaban
#34 lec #22 Winter99 2-16-2000

PLA Implementation of the Main ControlPLA Implementation of the Main Control

op<0>

op<5>. .op<5>. .
<0>

op<5>. .
<0>

op<5>. .
<0>

op<5>. .
<0>

op<5>. .
<0>

R-type ori lw sw beq jump
RegWrite

ALUSrc

MemtoReg

MemWrite

Branch

Jump

RegDst

ExtOp

ALUop<2>

ALUop<1>

ALUop<0>

