
EECC341 - ShaabanEECC341 - Shaaban
#1 Lec # 11 Winter 2001 1-16-2002

Combinational Arithmetic Circuits

• Addition:
– Half Adder (HA).

– Full Adder (FA).

– Carry Ripple Adders.

– Carry Look-Ahead Adders.

• Subtraction:
– Half Subtractor.

– Full Subtractor.

– Borrow Ripple Subtractors.

– Subtraction using adders.

• Multiplication:
– Combinational Array Multipliers.

EECC341 - ShaabanEECC341 - Shaaban
#2 Lec # 11 Winter 2001 1-16-2002

Half AdderHalf Adder
• Adding two single-bit binary values, X, Y produces a sum S bit and a carry

out C-out bit.

• This operation is called half addition and the circuit to realize it is called a
half adder.

X
0
0
1
1

Y
0
1
0
1

S
0
1
1
0

C-out
 0
 0
 0
 1

Half Adder Truth Table

Inputs Outputs

S(X,Y) = ΣΣ (1,2)
S = X’Y + XY’
S = X ⊕⊕ Y

C-out(x, y, C-in) = ΣΣ (3)
C-out = XY

X

Y
Sum S

C-out
 Half
Adder

X

Y

S
C-OUT

EECC341 - ShaabanEECC341 - Shaaban
#3 Lec # 11 Winter 2001 1-16-2002

Full Adder
• Adding two single-bit binary values, X,

Y with a carry input bit C-in produces
a sum bit S and a carry out C-out bit.

X
0
0
0
0
1
1
1
1

Y
0
0
1
1
0
0
1
1

S
0
1
1
0
1
0
0
1

C-out
 0
 0
 0
 1
 0
 1
 1
 1

C-in
 0
 1
 0
 1
 0
 1
 0
 1

Full Adder Truth Table

S(X,Y, C-in) = ΣΣ (1,2,4,7)
C-out(x, y, C-in) = ΣΣ (3,5,6,7)

Inputs Outputs

Sum S

C-in

X

0

1

00 01 11 10

Y

C-in

XY

0

1

2

3

6

7

4

5

1

1 1

1

C-in

X

0

1

00 01 11 10

Y

C-in

XY

0

1

2

3

6

7

4

5

1

11 1

Carry C-out

S = X’Y’(C-in) + XY’(C-in)’ + XY’(C-in)’ + XY(C-in)
S = X ⊕ Y ⊕ (C-in)

C-out = XY + X(C-in) + Y(C-in)

EECC341 - ShaabanEECC341 - Shaaban
#4 Lec # 11 Winter 2001 1-16-2002

Full Adder Circuit Using AND-OR

XY

YC-in

C-outXC-in

X

X

Y

C-in

Y

C-in

Y Y’
Y

X X’
X

C-in C-in’
C-in

X’Y’C-in

XY’C-in’

Sum SX’YC-in’

XYC-in

X’

X’

X

X

Y’

Y

Y

C-in

Y

C-in’

C-in’

C-in’

 Full
 Adder

X Y

S

C-inC-out

EECC341 - ShaabanEECC341 - Shaaban
#5 Lec # 11 Winter 2001 1-16-2002

Full Adder Circuit Using XOR

 Full
 Adder

X Y

S

C-inC-out XY

YC-in

C-outXC-in

X

X

Y

C-in

Y

C-in

Sum S

X

Y

C-in

EECC341 - ShaabanEECC341 - Shaaban
#6 Lec # 11 Winter 2001 1-16-2002

n-bit Carry Ripple Addersn-bit Carry Ripple Adders
• An n-bit adder used to add two n-bit binary numbers can built by

connecting in series n full adders.

– Each full adder represents a bit position j (from 0 to n-1).

– Each carry out C-out from a full adder at position j is connected to the
carry in C-in of the full adder at the higher position j+1.

• The output of a full adder at position j is given by:

 Sj = Xj ⊕⊕ Yj ⊕⊕ Cj

 Cj+1 = Xj . Yj + Xj . Cj + Y . Cj

• In the expression of the sum Cj must be generated by the full adder at the
lower position j-1.

• The propagation delay in each full adder to produce the carry is equal to
two gate delays = 2 ∆∆

• Since the generation of the sum requires the propagation of the carry from
the lowest position to the highest position , the total propagation delay of
the adder is approximately:

 Total Propagation delay = 2 n∆∆

EECC341 - ShaabanEECC341 - Shaaban
#7 Lec # 11 Winter 2001 1-16-2002

 Full
 Adder

X1 Y1

S1

C-inC-out
 Full
 Adder

X0 Y0

S0

C-inC-out C0 =0
 Full
 Adder

X2 Y2

S2

C-inC-out
 Full
 Adder

X3 Y3

S3

C-inC-out
C1C2C3C4

Data inputs to be added

Sum output

4-bit Carry Ripple Adder4-bit Carry Ripple Adder
Adds two 4-bit numbers:
 X = X3 X2 X1 X0
 Y = Y3 Y2 Y1 Y0
producing the sum S = S3 S2 S1 S0 ,
 C-out = C4 from the most significant
position j=3

 4-bit
 Adder

X3X2X1X0

S3 S2 S1 S0

C-inC-outC4

Y3Y2Y1Y0

C0 =0

Inputs to be added

Sum Output

Total Propagation delay = 2 n∆ ∆ = = 8∆∆

 or 8 gate delays

EECC341 - ShaabanEECC341 - Shaaban
#8 Lec # 11 Winter 2001 1-16-2002

Larger Adders
• Example: 16-bit adder using 4, 4-bit adders

• Adds two 16-bit inputs X (bits X0 to X15), Y (bits Y0 to Y15)
producing a 16-bit Sum S (bits S0 to S15) and a carry out C16
from most significant position.

 4-bit
 Adder

C-inC-out
 4-bit
 Adder

C-inC-out C0 =0
 4-bit
 Adder

C-inC-out
 4-bit
 Adder

C-inC-out
C4C8C12C16

Data inputs to be added X (X0 to X15) , Y (Y0-Y15)

Sum output S (S0 to S15)

Y3Y2Y1Y0X3X2X1X0Y3Y2Y1Y0X3X2X1X0Y3Y2Y1Y0X3X2X1X0Y3Y2Y1Y0X3X2X1X0

S3 S2 S1 S0S3 S2 S1 S0S3 S2 S1 S0S3 S2 S1 S0

Propagation delay for 16-bit adder = 4 x propagation delay of 4-bit adder
 = 4 x 2 n∆∆ = 4 = 4 x 8∆∆ = 32 ∆∆
 or 32 gate delays

EECC341 - ShaabanEECC341 - Shaaban
#9 Lec # 11 Winter 2001 1-16-2002

Carry Look-Ahead AddersCarry Look-Ahead Adders
• The disadvantage of the ripple carry adder is that the propagation delay of adder (2 n∆∆)

increases as the size of the adder, n is increased due to the carry ripple through all the
full adders.

• Carry look-ahead adders use a different method to create the needed carry bits for each
full adder with a lower constant delay equal to three gate delays.

• The carry out C-out from the full adder at position i or Cj+1 is given by:

 C-out = C i+1 = Xi . Yi + (Xi + Yi) . Ci

• By defining:

– Gi = Xi . Yi as the carry generate function for position i (one gate delay)
(If Gi =1 C i+1 will be generated regardless of the value Ci)

– Pi = Xi + Yi as the carry propagate function for position i (one gate delay)
(If Pi = 1 Ci will be propagated to C i+1)

• By using the carry generate function Gi and carry propagate function Pi , then C i+1 can
be written as:

 C-out = C i+1 = Gi + Pi . Ci

• To eliminate carry ripple the term Ci is recursively expanded and by
multiplying out, we obtain a 2-level AND-OR expression for each C i+1

EECC341 - ShaabanEECC341 - Shaaban
#10 Lec # 11 Winter 2001 1-16-2002

• For a 4-bit carry look-ahead adder the expanded expressions
for all carry bits are given by:

C1 = G0 + P0.C0

C2 = G1 + P1.C1 = G1 + P1.G0 + P1.P0.C0

C3 = G2 + P2.G1 + P2.P1.G0 + P2.P1.P0.C0

C4 = G3 + P3.G2 + P3.P2.G1 + P3 . P2.P1.G0 + P3.P2.P1.P0.C0

 where Gi = Xi . Yi Pi = Xi + Yi

• The additional circuits needed to realize the expressions are
usually referred to as the carry look-ahead logic.

• Using carry-ahead logic all carry bits are available after three
gate delays regardless of the size of the adder.

Carry Look-Ahead AddersCarry Look-Ahead Adders

EECC341 - ShaabanEECC341 - Shaaban
#11 Lec # 11 Winter 2001 1-16-2002

Carry Look-Ahead CircuitCarry Look-Ahead Circuit

Ci = Gi-1 + Pi-1. Gi-2 + …. + Pi-1.P i-2. …P1 . G0 + P i-1.P i-2. …P0 . C0

EECC341 - ShaabanEECC341 - Shaaban
#12 Lec # 11 Winter 2001 1-16-2002

Binary Arithmetic OperationsBinary Arithmetic Operations
SubtractionSubtraction

• Two binary numbers are subtracted by subtracting each

pair of bits together with borrowing, where needed.

• Subtraction Example:

 0 0 1 1 1 1 1 0 0 Borrow

 X 229 1 1 1 0 0 1 0 1

 Y - 46 - 0 0 1 0 1 1 1 0

 183 1 0 1 1 0 1 1 1

EECC341 - ShaabanEECC341 - Shaaban
#13 Lec # 11 Winter 2001 1-16-2002

Half Half SubtractorSubtractor
• Subtracting a single-bit binary value Y from anther X (I.e. X -Y) produces

a difference bit D and a borrow out bit B-out.

• This operation is called half subtraction and the circuit to realize it is called
a half subtractor.

X
0
0
1
1

Y
0
1
0
1

D
0
1
1
0

B-out
 0
 1
 0
 0

Half Subtractor Truth Table

Inputs Outputs

D(X,Y) = ΣΣ (1,2)
D = X’Y + XY’
D = X ⊕⊕ Y

B-out(x, y, C-in) = ΣΣ (1)
B-out = X’Y

 Half
Subtractor

X

Y

D
B-OUT

X

Y

Difference
D

B-out

EECC341 - ShaabanEECC341 - Shaaban
#14 Lec # 11 Winter 2001 1-16-2002

Full Subtractor
• Subtracting two single-bit binary values, Y,

B-in from a single-bit value X produces a
difference bit D and a borrow out B-out bit.
This is called full subtraction.

X
0
0
0
0
1
1
1
1

Y
0
0
1
1
0
0
1
1

D
0
1
1
0
1
0
0
1

B-out
 0
 1
 1
 1
 0
 0
 0
 1

B-in
 0
 1
 0
 1
 0
 1
 0
 1

Full Subtractor Truth Table

S(X,Y, C-in) = ΣΣ (1,2,4,7)
C-out(x, y, C-in) = ΣΣ (1,2,3,7)

Inputs Outputs

 Difference D

B-in

X

0

1

00 01 11 10

Y

B-in

XY

0

1

2

3

6

7

4

5

1

1 1

1

B-in

X

0

1

00 01 11 10

Y

B-in

XY

0

1

2

3

6

7

4

5

1

11 1

Borrow B-out

S = X’Y’(B-in) + XY’(B-in)’ + XY’(B-in)’ + XY(B-in)
S = X ⊕ Y ⊕ (C-in)

B-out = X’Y + X’(B-in) + Y(B-in)

EECC341 - ShaabanEECC341 - Shaaban
#15 Lec # 11 Winter 2001 1-16-2002

Full Subtractor Circuit Using AND-OR

X’Y

YB-in

B-outX’B-in

X’

X’

Y

B-in

Y

B-in

Y Y’
Y

X X’
X

B-in B-in’
B-in

X’Y’B-in

XY’B-in’

Difference DX’YB-in’

XYB-in

X’

X’

X

X

Y’

Y

Y

B-in

Y

B-in’

B-in’

B-in’

 Full
 Subtractor

X Y

D

B-inB-out

EECC341 - ShaabanEECC341 - Shaaban
#16 Lec # 11 Winter 2001 1-16-2002

Full Subtractor Circuit Using XOR

Difference D

X

Y

B-in

X’Y

YB-in

B-outX’B-in

X’

X’

Y

B-in

Y

B-in

 Full
 Subtractor

X Y

D

B-inB-out

EECC341 - ShaabanEECC341 - Shaaban
#17 Lec # 11 Winter 2001 1-16-2002

An n-bit subtracor used to subtract an n-bit number Y from another

n-bit number X (i.e X-Y) can be built in one of two ways:

• By using n full subtractors and connecting them in series,
creating a borrow ripple subtractor:
– Each borrow out B-out from a full subtractor at position j is connected to

the borrow in B-in of the full subtracor at the higher position j+1.

• By using an n-bit adder and n inverters:

– Find two’s complement of Y by:

• Inverting all the bits of Y using the n inverters.

• Adding 1 by setting the carry in of the least significant
position to 1

– The original subtraction (X - Y) now becomes an addition of
X to two’s complement of Y using the n-bit adder.

n-bit n-bit SubtractorsSubtractors

EECC341 - ShaabanEECC341 - Shaaban
#18 Lec # 11 Winter 2001 1-16-2002

4-bit Borrow Ripple 4-bit Borrow Ripple SubtractorSubtractor

Subtracts two 4-bit numbers:
 Y = Y3 Y2 Y1 Y0 from
 X = X3 X2 X1 X0
 Y = Y3 Y2 Y1 Y0
producing the difference D = D3 D2 D1 D0 ,
 B-out = B4 from the most significant
position j=3

 4-bit
Subtractor

X3X2X1X0

D3 D2 D1 D0

B-inB-outB4

Y3Y2Y1Y0

B0 =0

Inputs

Difference Output D

 Full
 Subtractor

X1 Y1

D1

B-inB-out

X0 Y0

D0

B-inB-out B0 =0

X2 Y2

D2

B-inB-out

X3 Y3

D3

B-inB-out
B1B2B3B4

Data inputs to be subtracted

Difference output D

 Full
 Subtractor

 Full
 Subtractor

 Full
 Subtractor

EECC341 - ShaabanEECC341 - Shaaban
#19 Lec # 11 Winter 2001 1-16-2002

4-bit 4-bit Subtractor Subtractor Using 4-bit AdderUsing 4-bit Adder

 4-bit
 Adder

X3 X2 X1 X0

D3 D2 D1 D0

C-inC-outC4

Y3 Y2 Y1 Y0

C0 = 1

Inputs to be subtracted

Difference Output

S3 S2 S1 S0

EECC341 - ShaabanEECC341 - Shaaban
#20 Lec # 11 Winter 2001 1-16-2002

Binary MultiplicationBinary Multiplication
• Multiplication is achieved by adding a list of shifted multiplicands according to the

digits of the multiplier.

• Ex. (unsigned)

 11 1 0 1 1 multiplicand (4 bits)

X 13 X 1 1 0 1 multiplier (4 bits)

-------- -------------------

 33 1 0 1 1

 11 0 0 0 0

______ 1 0 1 1

 143 1 0 1 1

 1 0 0 0 1 1 1 1 Product (8 bits)

• An n-bit X n-bit multiplier can be realized in combinational
circuitry by using an array of n-1 n-bit adders where is adder is
shifted by one position.

• For each adder one input is the multiplied by 0 or 1 (using AND
gates) depending on the multiplier bit, the other input is n partial
product bits.

 X3 X2 X1 X0
 x Y3 Y2 Y1 Y0

 X3.Y0 X2.Y0 X1.Y0 X0.Y0
 X3.Y1 X2.Y1 X1.Y1 X0.Y1
 X3.Y2 X2.Y2 X1.Y2 X0.Y2
 X3.Y3 X2.Y3 X1.Y3 X0.Y3

 P7 P6 P5 P4 P3 P2 P1 P0

EECC341 - ShaabanEECC341 - Shaaban
#21 Lec # 11 Winter 2001 1-16-2002

4x4 Array Multiplier4x4 Array Multiplier

