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Combinational Arithmetic Circuits

• Addition:
– Half Adder (HA).

– Full Adder (FA).

– Carry Ripple Adders.

– Carry Look-Ahead Adders.

• Subtraction:
– Half Subtractor.

– Full Subtractor.

– Borrow Ripple Subtractors.

– Subtraction using adders.

• Multiplication:
– Combinational Array Multipliers.
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Half AdderHalf Adder
• Adding two single-bit binary values, X, Y produces a sum S bit and a carry

out C-out bit.

• This operation is called half addition and the circuit to realize it is called a
half adder.

X
0
0
1
1

Y
0
1
0
1

S
0
1
1
0

C-out
   0
   0
   0
   1

Half Adder Truth Table

Inputs Outputs

S(X,Y) = ΣΣ (1,2)
S  =  X’Y +  XY’
S  =  X ⊕⊕ Y

C-out(x, y, C-in) = ΣΣ (3)
C-out  =  XY

X

Y
Sum S

C-out
  Half
Adder

X

Y

S
C-OUT
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Full Adder
• Adding two single-bit binary values, X,

Y with a carry input bit C-in  produces
a sum bit  S  and a carry out C-out bit.

X
0
0
0
0
1
1
1
1

Y
0
0
1
1
0
0
1
1

S
0
1
1
0
1
0
0
1

C-out
   0
   0
   0
   1
   0
   1
   1
   1

C-in
  0
  1
  0
  1
  0
  1
  0
  1

Full Adder Truth Table

S(X,Y, C-in) = ΣΣ (1,2,4,7)
C-out(x, y, C-in) = ΣΣ (3,5,6,7)

Inputs Outputs

Sum S

C-in

X

0

1

00       01       11        10

Y

C-in

XY

0

1

2

3

6

7

4

5

1

1 1

1

C-in

X

0

1

00       01       11        10

Y

C-in

XY

0

1

2

3

6

7

4

5

1

11 1

Carry C-out

S =  X’Y’(C-in) + XY’(C-in)’ + XY’(C-in)’ + XY(C-in)
S =  X  ⊕   Y  ⊕    (C-in) 

C-out =  XY + X(C-in) + Y(C-in)
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Full Adder Circuit Using AND-OR

XY

YC-in

C-outXC-in

X

X

Y

C-in

Y

C-in

Y Y’
Y

X X’
X

C-in C-in’
C-in

X’Y’C-in

XY’C-in’

Sum SX’YC-in’

XYC-in

X’

X’

X

X

Y’

Y

Y

C-in

Y

C-in’

C-in’

C-in’

  Full
 Adder

X Y

S

C-inC-out
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Full Adder Circuit Using XOR

  Full
 Adder

X Y

S

C-inC-out XY

YC-in

C-outXC-in

X

X

Y

C-in

Y

C-in

Sum S

X

Y

C-in
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n-bit Carry Ripple Addersn-bit Carry Ripple Adders
• An n-bit adder used to add two n-bit binary numbers can built by

connecting in series n full adders.

– Each full adder represents a bit position  j  (from 0 to n-1).

– Each carry out C-out from a full adder at position j is connected to the
carry in C-in of the full adder at the higher position j+1.

• The output of a full adder at position  j   is given by:

                                             Sj =  Xj  ⊕⊕   Yj  ⊕⊕    Cj

                                       Cj+1 =  Xj  . Yj  +  Xj  . Cj  + Y . Cj

• In the expression of the sum Cj must be generated by the full adder at the
lower position j-1.

• The propagation delay in each full adder to produce the carry is equal to
two gate delays   =  2 ∆∆

• Since the generation of the sum requires the propagation of the carry from
the lowest position to the highest position , the total propagation delay of
the adder is approximately:

                        Total Propagation delay     = 2 n∆∆
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  Full
 Adder

X1 Y1

S1

C-inC-out
  Full
 Adder

X0 Y0

S0

C-inC-out C0 =0
  Full
 Adder

X2 Y2

S2

C-inC-out
  Full
 Adder

X3 Y3

S3

C-inC-out
C1C2C3C4

Data inputs to be added 

Sum output

4-bit Carry Ripple Adder4-bit Carry Ripple Adder
Adds two 4-bit numbers:
                  X = X3  X2  X1  X0 
                  Y = Y3  Y2  Y1  Y0 
producing the sum  S =  S3  S2  S1  S0 , 
 C-out = C4  from the most  significant 
position j=3

  4-bit
 Adder

X3X2X1X0

S3  S2  S1  S0

C-inC-outC4

Y3Y2Y1Y0

C0 =0

Inputs to be added 

Sum Output 

Total Propagation delay     = 2 n∆ ∆  =  = 8∆∆ 

                                            or    8 gate delays



EECC341 - ShaabanEECC341 - Shaaban
#8   Lec # 11   Winter 2001  1-16-2002

Larger Adders
• Example:  16-bit adder using 4,  4-bit adders

• Adds two 16-bit inputs X (bits  X0  to X15),  Y (bits Y0 to Y15)
producing  a 16-bit Sum S (bits  S0 to S15)  and a carry out C16
from most significant position.

  4-bit
 Adder

C-inC-out
  4-bit
 Adder

C-inC-out C0 =0
  4-bit
 Adder

C-inC-out
  4-bit
 Adder

C-inC-out
C4C8C12C16

Data inputs to be added   X (X0 to X15)  ,  Y (Y0-Y15)

Sum output   S  (S0 to S15)

Y3Y2Y1Y0X3X2X1X0Y3Y2Y1Y0X3X2X1X0Y3Y2Y1Y0X3X2X1X0Y3Y2Y1Y0X3X2X1X0

S3 S2 S1 S0S3 S2 S1 S0S3 S2 S1 S0S3 S2 S1 S0

Propagation delay for 16-bit adder  =  4 x propagation delay of 4-bit adder
                                                             =  4 x    2 n∆∆  =  4    =  4   x      8∆∆   =  32 ∆∆
                                                                                                                                                                                                            or       32 gate delays
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Carry Look-Ahead AddersCarry Look-Ahead Adders
• The disadvantage of the ripple carry adder is that the propagation delay of adder (2 n∆∆ )

increases as the size of the adder, n is increased due to the carry ripple through all the
full adders.

• Carry look-ahead adders use a different method to create the needed carry  bits for each
full adder with a lower constant delay equal to three gate delays.

• The carry out C-out from the full adder at position i  or  Cj+1  is given by:

                          C-out =  C i+1 =  Xi . Yi   +  (Xi  +  Yi) .  Ci

• By  defining:

– Gi  = Xi . Yi   as  the carry generate function for position i      (one gate delay)
(If  Gi =1    C i+1 will be generated regardless of the value Ci)

– Pi   = Xi  +  Yi   as  the carry propagate function for position i      (one gate delay)
(If   Pi = 1   Ci will be propagated to C i+1)

• By using the carry generate function Gi  and carry propagate function Pi , then C i+1 can
be written as:

                                         C-out =  C i+1 =       Gi +  Pi .  Ci

• To eliminate carry ripple the term Ci  is  recursively expanded and by
multiplying out, we obtain a 2-level AND-OR expression for each C i+1
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• For a 4-bit carry look-ahead adder the expanded expressions
for all carry bits are given by:

C1 = G0 + P0.C0

C2 = G1 + P1.C1 = G1 + P1.G0 + P1.P0.C0

C3 = G2 + P2.G1 + P2.P1.G0 + P2.P1.P0.C0

C4 = G3 + P3.G2 + P3.P2.G1 + P3 . P2.P1.G0 + P3.P2.P1.P0.C0

        where      Gi  =  Xi . Yi          Pi   = Xi  +  Yi

• The additional circuits needed to realize the expressions are
usually referred to as the carry look-ahead logic.

• Using carry-ahead logic all carry bits are available after three
gate delays regardless of the size of the adder.

Carry Look-Ahead AddersCarry Look-Ahead Adders
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Carry Look-Ahead CircuitCarry Look-Ahead Circuit

Ci  =  Gi-1 + Pi-1. Gi-2 +   ….    +   Pi-1.P i-2. …P1 . G0    +    P i-1.P i-2. …P0 . C0 
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Binary Arithmetic OperationsBinary Arithmetic Operations
SubtractionSubtraction

• Two binary numbers are subtracted by subtracting each

pair of bits together with borrowing, where needed.

• Subtraction Example:

                                              0  0  1  1  1  1  1  0  0   Borrow

                 X      229                  1  1  1  0  0  1  0  1

                 Y  -    46         -        0  0  1  0  1  1  1  0

                         183                   1  0  1  1  0  1  1  1
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Half Half SubtractorSubtractor
• Subtracting a single-bit binary value Y from anther X  (I.e.  X -Y ) produces

a difference bit  D  and a borrow out  bit B-out.

• This operation is called half subtraction and the circuit to realize it is called
a half subtractor.

X
0
0
1
1

Y
0
1
0
1

D
0
1
1
0

B-out
   0
   1
   0
   0

Half Subtractor Truth Table

Inputs Outputs

D(X,Y) = ΣΣ (1,2)
D  =  X’Y +  XY’
D  =  X ⊕⊕ Y

B-out(x, y, C-in) = ΣΣ (1)
B-out  =  X’Y

     Half
Subtractor

X

Y

D
B-OUT

X

Y

Difference
D

B-out
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Full Subtractor
• Subtracting two single-bit binary values, Y,

B-in  from a single-bit value X produces a
difference bit  D  and a borrow out B-out bit.
This is called full subtraction.

X
0
0
0
0
1
1
1
1

Y
0
0
1
1
0
0
1
1

D
0
1
1
0
1
0
0
1

B-out
   0
   1
   1
   1
   0
   0
   0
   1

B-in
  0
  1
  0
  1
  0
  1
  0
  1

Full Subtractor Truth Table

S(X,Y, C-in) = ΣΣ (1,2,4,7)
C-out(x, y, C-in) = ΣΣ (1,2,3,7)

Inputs Outputs

      Difference  D

B-in

X

0

1

00       01       11        10

Y

B-in

XY

0

1

2

3

6

7

4

5

1

1 1

1

B-in

X

0

1

00       01       11        10

Y

B-in

XY

0

1

2

3

6

7

4

5

1

11 1

Borrow  B-out

S =  X’Y’(B-in) + XY’(B-in)’ + XY’(B-in)’ + XY(B-in)
S =  X  ⊕   Y  ⊕    (C-in) 

B-out =  X’Y + X’(B-in) + Y(B-in)
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Full Subtractor Circuit Using AND-OR

X’Y

YB-in

B-outX’B-in

X’

X’

Y

B-in

Y

B-in

Y Y’
Y

X X’
X

B-in B-in’
B-in

X’Y’B-in

XY’B-in’

Difference DX’YB-in’

XYB-in

X’

X’

X

X

Y’

Y

Y

B-in

Y

B-in’

B-in’

B-in’

      Full
 Subtractor

X Y

D

B-inB-out
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Full Subtractor Circuit Using XOR

Difference  D

X

Y

B-in

X’Y

YB-in

B-outX’B-in

X’

X’

Y

B-in

Y

B-in

      Full
 Subtractor

X Y

D

B-inB-out
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An n-bit subtracor used to subtract an n-bit number Y from another

n-bit number X  (i.e  X-Y) can be built in one of two ways:

• By using n full subtractors and connecting them in series,
creating a borrow ripple subtractor:
– Each borrow out B-out from a full subtractor at position j is connected to

the borrow in B-in of the full subtracor at the higher position j+1.

• By using an n-bit adder and  n inverters:

– Find two’s complement of Y by:

•  Inverting all the bits of Y using the n inverters.

• Adding 1 by setting the carry in of the least significant
position to 1

– The original subtraction (X - Y)  now becomes an addition of
X to two’s complement of  Y  using the n-bit adder.

n-bit n-bit SubtractorsSubtractors
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4-bit Borrow Ripple 4-bit Borrow Ripple SubtractorSubtractor

Subtracts  two 4-bit numbers:
      Y = Y3  Y2  Y1  Y0  from 
                  X = X3  X2  X1  X0 
                  Y = Y3  Y2  Y1  Y0 
producing the difference D =  D3  D2  D1  D0 , 
 B-out = B4  from the most  significant 
position j=3

    4-bit
Subtractor

X3X2X1X0

D3  D2  D1  D0

B-inB-outB4

Y3Y2Y1Y0

B0 =0

Inputs  

Difference Output D 

     Full
 Subtractor

X1 Y1

D1

B-inB-out

X0 Y0

D0

B-inB-out B0 =0

X2 Y2

D2

B-inB-out

X3 Y3

D3

B-inB-out
B1B2B3B4

Data inputs to be subtracted 

Difference output D

     Full
 Subtractor

     Full
 Subtractor

     Full
 Subtractor
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4-bit 4-bit Subtractor Subtractor Using 4-bit AdderUsing 4-bit Adder

   4-bit
 Adder

X3  X2   X1    X0

D3      D2    D1     D0

C-inC-outC4

Y3    Y2    Y1     Y0

C0 = 1

Inputs to be subtracted 

Difference Output 

S3      S2     S1      S0
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Binary MultiplicationBinary Multiplication
• Multiplication is achieved by adding a list of shifted multiplicands according to the

digits of the multiplier.

• Ex.   (unsigned)

    11                                 1 0 1 1       multiplicand (4 bits)

X 13                       X       1 1 0 1        multiplier  (4 bits)

--------                    -------------------

     33                               1 0 1  1

   11                              0 0 0 0

______                      1 0 1 1

   143                      1 0 1 1

                             ---------------------

                             1 0 0 0 1 1 1 1            Product (8 bits)

• An  n-bit X n-bit multiplier can be realized in combinational
circuitry  by using an array of   n-1    n-bit  adders where is adder is
shifted by one position.

• For each adder one input is the multiplied by 0 or 1 (using AND
gates) depending on the multiplier bit, the other input is n partial
product bits.

                                                                             X3     X2    X1     X0
                                                                    x       Y3     Y2    Y1     Y0
                                                             __________________________
                                                           X3.Y0   X2.Y0    X1.Y0     X0.Y0
                                            X3.Y1   X2.Y1    X1.Y1    X0.Y1
                            X3.Y2   X2.Y2    X1.Y2    X0.Y2
            X3.Y3   X2.Y3    X1.Y3     X0.Y3
_______________________________________________________________________________________________________________________________________________

 P7         P6          P5            P4           P3           P2            P1           P0
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4x4 Array Multiplier4x4 Array Multiplier


