Combinational Arithmetic Circuits

Addition:

- Half Adder (HA).
- Full Adder (FA).
- Carry Ripple Adders.
- Carry Look-Ahead Adders.

• Subtraction:

- Half Subtractor.
- Full Subtractor.
- Borrow Ripple Subtractors.
- Subtraction using adders.

• Multiplication:

Combinational Array Multipliers.

Half Adder

- Adding two single-bit binary values, X, Y produces a sum S bit and a carry out C-out bit.
- This operation is called half addition and the circuit to realize it is called a half adder.

Half Adder Truth Table

Iı	Inputs		tputs
X	Y	S	C-out
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

$$S(X,Y) = S(1,2)$$

 $S = X'Y + XY'$
 $S = X A Y$

C-out(x, y, C-in) =
$$\mathbf{S}$$
 (3)
C-out = $\mathbf{X}\mathbf{Y}$

Full Adder

Adding two single-bit binary values, X,
 Y with a carry input bit C-in produces
 a sum bit S and a carry out C-out bit.

Full Adder Truth Table

Inputs			Outputs		
X	Y	C-in	S	C-out	
0	0	0	0	0	
0	0	1	1	0	
0	1	0	1	0	
0	1	1	0	1	
1	0	0	1	0	
1	0	1	0	1	
1	1	0	0	1	
1	1	1	1	1	

$$S(X,Y, C-in) = S(1,2,4,7)$$

C-out(x, y, C-in) = $S(3,5,6,7)$

$$\begin{split} S &= X'Y'(C\text{-in}) + XY'(C\text{-in})' + XY'(C\text{-in})' + XY(C\text{-in}) \\ S &= X \ \oplus \ Y \ \oplus \ (C\text{-in}) \end{split}$$

C-out = XY + X(C-in) + Y(C-in)

Full Adder Circuit Using AND-OR

Full Adder Circuit Using XOR

n-bit Carry Ripple Adders

- An n-bit adder used to add two n-bit binary numbers can built by connecting in series n full adders.
 - Each full adder represents a bit position j (from 0 to n-1).
 - Each carry out C-out from a full adder at position j is connected to the carry in C-in of the full adder at the higher position j+1.
- The output of a full adder at position j is given by:

$$S_{j} = X_{j} X_{j} X_{j} C_{j}$$

$$C_{j+1} = X_{j} Y_{j} X_{j} C_{j} + Y C_{j}$$

- In the expression of the sum C_j must be generated by the full adder at the lower position j-1.
- The propagation delay in each full adder to produce the carry is equal to two gate delays $= 2 \mathbf{D}$
- Since the generation of the sum requires the propagation of the carry from the lowest position to the highest position, the total propagation delay of the adder is approximately:

Total Propagation delay $= 2 n \mathbf{D}$

4-bit Carry Ripple Adder

Adds two 4-bit numbers:

X = X3 X2 X1 X0

Y = Y3 Y2 Y1 Y0

producing the sum S = S3 S2 S1 S0, C-out = C4 from the most significant position j=3

Sum Output

Inputs to be added

Total Propagation delay $= 2 n\mathbf{D} = 8\mathbf{D}$

or 8 gate delays

Data inputs to be added

#7 Lec # 11 Winter 2001 1-16-2002

Larger Adders

- Example: 16-bit adder using 4, 4-bit adders
- Adds two 16-bit inputs X (bits X0 to X15), Y (bits Y0 to Y15) producing a 16-bit Sum S (bits S0 to S15) and a carry out C16 from most significant position.

Data inputs to be added X (X0 to X15), Y (Y0-Y15)

Sum output S (S0 to S15)

Propagation delay for 16-bit adder = $4 \times propagation delay of 4-bit adder$ = $4 \times 2 \text{ n} \mathbf{D} = \mathbf{4} \times 8 \mathbf{D} = 32 \mathbf{D}$ or 32 gate delays

Carry Look-Ahead Adders

- The disadvantage of the ripple carry adder is that the propagation delay of adder (2 n**D**) increases as the size of the adder, n is increased due to the carry ripple through all the full adders.
- Carry look-ahead adders use a different method to create the needed carry bits for each full adder with a lower constant delay equal to three gate delays.
- The carry out C-out from the full adder at position i $\ensuremath{C_{j+1}}$ is given by:

C-out =
$$C_{i+1} = X_i \cdot Y_i + (X_i + Y_i) \cdot C_i$$

- By defining:
 - $G_i = X_i \cdot Y_i$ as the carry generate function for position i (one gate delay) (If $G_i = 1$ C $_{i+1}$ will be generated regardless of the value C_i)
 - $-P_{i}=X_{i}+Y_{i} \ as \ the carry propagate function for position i \qquad (one gate delay)$ (If $P_{i}=1$ C_{i} will be propagated to C_{i+1})
- By using the carry generate function G_i and carry propagate function P_i , then C_{i+1} can be written as:

$$C-out = C_{i+1} = G_i + P_i \cdot C_i$$

• To eliminate carry ripple the term C_i is recursively expanded and by multiplying out, we obtain a 2-level AND-OR expression for each C_{i+1}

Carry Look-Ahead Adders

• For a 4-bit carry look-ahead adder the expanded expressions for all carry bits are given by:

$$C_{1} = G_{0} + P_{0}.C_{0}$$

$$C_{2} = G_{1} + P_{1}.C_{1} = G_{1} + P_{1}.G_{0} + P_{1}.P_{0}.C_{0}$$

$$C_{3} = G_{2} + P_{2}.G_{1} + P_{2}.P_{1}.G_{0} + P_{2}.P_{1}.P_{0}.C_{0}$$

$$C_{4} = G_{3} + P_{3}.G_{2} + P_{3}.P_{2}.G_{1} + P_{3}.P_{2}.P_{1}.G_{0} + P_{3}.P_{2}.P_{1}.P_{0}.C_{0}$$

where
$$G_i = X_i \cdot Y_i$$
 $P_i = X_i + Y_i$

- The additional circuits needed to realize the expressions are usually referred to as the carry look-ahead logic.
- Using carry-ahead logic all carry bits are available after three gate delays regardless of the size of the adder.

Carry Look-Ahead Circuit

$$C_{i} = G_{i-1} + P_{i-1} G_{i-2} + ... + P_{i-1} P_{i-2} ... P_{1} G_{0} + P_{i-1} P_{i-2} ... P_{0} C_{0}$$

Binary Arithmetic Operations Subtraction

- Two binary numbers are subtracted by subtracting each pair of bits together with borrowing, where needed.
- Subtraction Example:

Half Subtractor

- Subtracting a single-bit binary value Y from anther X (I.e. X -Y) produces a difference bit D and a borrow out bit B-out.
- This operation is called half subtraction and the circuit to realize it is called a half subtractor.

Half Subtractor Truth Table

In	nputs	Outputs			
X	\mathbf{Y}	D	B-out		
0	0	0	0		
0	1	1	1		
1	0	1	0		
1	1	0	0		

$$D(X,Y) = S(1,2)$$

 $D = X'Y + XY'$
 $D = X A Y$

B-out(x, y, C-in) =
$$\mathbf{S}$$
 (1)
B-out = \mathbf{X} 'Y

Full Subtractor

• Subtracting two single-bit binary values, Y, B-in from a single-bit value X produces a difference bit D and a borrow out B-out bit. This is called full subtraction.

Full Subtractor Truth Table

Inputs	Outputs
<u> </u>	

X	Y	B-in	D	B-out
0	0	0	0	0
0	0	1	1	1
0	1	0	1	1
0	1	1	0	1
1	0	0	1	0
1	0	1	0	0
1	1	0	0	0
1	1	1	1	1
			1	

$$S(X,Y, C-in) = S(1,2,4,7)$$

C-out(x, y, C-in) = $S(1,2,3,7)$

$$S = X'Y'(B-in) + XY'(B-in)' + XY'(B-in)' + XY(B-in)$$

 $S = X \oplus Y \oplus (C-in)$

$$\mathbf{B}\text{-out} = \mathbf{X'Y} + \mathbf{X'}(\mathbf{B}\text{-in}) + \mathbf{Y}(\mathbf{B}\text{-in})$$

Full Subtractor Circuit Using AND-OR

Full Subtractor Circuit Using XOR

n-bit Subtractors

An n-bit subtracor used to subtract an n-bit number Y from another n-bit number X (i.e X-Y) can be built in one of two ways:

- By using n full subtractors and connecting them in series, creating a borrow ripple subtractor:
 - Each borrow out B-out from a full subtractor at position j is connected to the borrow in B-in of the full subtracor at the higher position j+1.
- By using an n-bit adder and n inverters:
 - Find two's complement of Y by:
 - Inverting all the bits of Y using the n inverters.
 - Adding 1 by setting the carry in of the least significant position to 1
 - The original subtraction (X Y) now becomes an addition of X to two's complement of Y using the n-bit adder.

4-bit Borrow Ripple Subtractor

Inputs

Subtracts two 4-bit numbers:

$$Y = Y3 Y2 Y1 Y0 from$$

$$X = X3 X2 X1 X0$$

$$Y = Y3 Y2 Y1 Y0$$

producing the difference D = D3 D2 D1 D0,

B-out = B4 from the most significant

position j=3

Difference Output D

Data inputs to be subtracted

#18 Lec # 11 Winter 2001 1-16-2002

4-bit Subtractor Using 4-bit Adder

Inputs to be subtracted

Difference Output

Binary Multiplication

- Multiplication is achieved by adding a list of shifted multiplicands according to the digits of the multiplier.
- Ex. (unsigned)

11	1011	. 1	multiplicar	nd (4 bits))		X3	X2 X1	X0
X 13	X 1101		multiplier	(4 bits)		X	Y3	Y2 Y1	Y0
						X3.Y0	X2.Y0	X1.Y0	X0.Y0
33	1011				X3.Y1	X2.Y1	X1.Y1	X0.Y1	
11	$0\ 0\ 0\ 0$			X3.Y2	X2.Y2	X1.Y2	X0.Y2		
	1011		X3.Y3	X2.Y3	X1.Y3	X0.Y3			
143	1011	P7	P6	P5	P4	P3	P2	P1	P0
	10001111		Product	(8 bits)					

- An n-bit X n-bit multiplier can be realized in combinational circuitry by using an array of n-1 n-bit adders where is adder is shifted by one position.
- For each adder one input is the multiplied by 0 or 1 (using AND gates) depending on the multiplier bit, the other input is n partial product bits.

4x4 Array Multiplier

