Types of Logic Circuits

- Combinational logic circuits:
 - Outputs depend only on its current inputs.
 - A combinational circuit may contain an arbitrary number of logic gates and inverters but no feedback loops.
 - A feedback loop is a connection from the output of one gate to propagate back into the input of that same gate
 - The function of a combinational circuit represented by a logic diagram is formally described using logic expressions and truth tables.

• Sequential logic circuits:

- Outputs depend not only on the current inputs but also on the past sequences of inputs.
- Sequential logic circuits contain combinational logic in addition to memory elements formed with feedback loops.
- The behavior of sequential circuits is formally described with state transition tables and diagrams.
 EECC341 Shaaban

#1 Lec # 4 Winter 2001 12-11-2001

Sequential Circuits

- The general structure of a sequential Circuit:
 - Combinational logic + Memory Elements

Memory element: a device that can remember value indefinitely, or change value on command from its inputs.

• Examples: latches and flip-flops

#2 Lec # 4 Winter 2001 12-11-2001

Memory Element Example: S-R (Set-Reset) Latch

- The output Q represents the state of the latch
- When *Q* is HIGH, the latch is in *SET* state.
- When *Q* is LOW, the latch is in *RESET* state

S	R	Q	Q'		
0	0	NC	NC	No change. Latch remained in present state.	
1	0	1	0	Latch SET.	
0	1	0	1	Latch RESET.	
1	1	0	0	Invalid condition.	

S-R latch using NOR gates Characteristics or function table

#3 Lec #4 Winter 2001 12-11-2001

• Combinational Circuit Analysis:

- Start with a logic diagram of the circuit.
- Proceed to a formal description of the function of the circuit using truth tables or logic expressions.

• Combinational Circuit Synthesis:

- May start with an informal (possibly verbal) description of the function performed.
- A formal description of the circuit function in terms of a truth table or logic expression.
- The logic expression is manipulated using Boolean (or switching) algebra and optimized to minimize the number of gates needed, or to use specific type of gates.
- A logic diagram is generated based on the resulting logic expression.

#4 Lec # 4 Winter 2001 12-11-2001

Boolean or Switching Algebra

- Set of Elements: {0,1}
- Set of Operations: { . , + , ' } (logical addition, +) , NOT
- AND (logical multiplication, .), OR

- Symbolic variables such as X used to represent the condition of a logic signal (0 or 1, low or high, on or off).
- Switching Algebra Axioms (or postulates):
 - Minimal set basic definitions (A1-A5, A1'-A5') that are assumed to be true and completely define switching algebra.
 - All other switching algebra theorems (T1-T15) can be proven using these axioms as a starting point.
 EECC341 Shaaban

#5 Lec #4 Winter 2001 12-11-2001

Switching Algebra Axioms

• First two axioms state that a variable X can only take on only one of two values:

(A1)
$$X = 0$$
 if $X^{1} 1$
(A1') $X = 1$ if $X^{1} 0$

• Not Axioms, formally define X' (X prime or NOT X):

(A2) If X = 0, then X' = 1(A2') if X = 1, then, X' = 0

Note: Above axioms are stated in pairs with only difference being the interchange of the symbols 0 and 1.

Three More Switching Algebra Axioms

• The following three Boolean Algebra axioms state and formally define the AND, OR operations:

(A3)	0.0 = 0
(A3')	1 + 1 = 1
(A4)	1.1 = 1
(A4')	0 + 0 = 0
(A5)	0.1 = 1.0 = 0
(A5')	1 + 0 = 0 + 1 = 1

Axioms A1-A5, A1'-A5' completely define switching algebra.

#7 Lec #4 Winter 2001 12-11-2001

Switching Algebra: Single-Variables Theorems

• Switching-algebra theorems are statements known to be always true (proven using axioms) that allow us to manipulate algebraic logic expressions to allow for simpler analysis.

(e.g.
$$X + 0 = X$$
 allow us to replace every $X + 0$ with X)

The Theorems: (**T1-T5**, **T1'-T5'**)

(T1)	$\mathbf{X} + 0 = \mathbf{X}$	(T1') $X \cdot 1 = X$ (Identities)
(T2)	X + 1 = 1	(T2') $X \cdot 0 = 0$ (Null elements)
(T3)	X + X = X	(T3') $X \cdot X = X$ (Idempotency)
(T4)	(X')' = X	(Involution)
(T5)	X + X' = 1	(T5') $X \cdot X' = 0$ (Complements)

#8 Lec # 4 Winter 2001 12-11-2001

Perfect Induction

• Most theorems in switching algebra are simple to prove using *perfect induction*:

Since a switching variable can only take the values 0 and 1 we can prove a theorem involving a single variable X by proving it true for X = 0 and X =1

Example: To prove (T1) X + 0 = X[X = 0] 0 + 0 = 0 true according to axiom A4' [X = 1] 1 + 0 = 1 true according to axiom A5'

#9 Lec #4 Winter 2001 12-11-2001

Switching Algebra: Two- and Three-Variable Theorems (Commutativity) $(\mathbf{T6}) \quad \mathbf{X} + \mathbf{Y} = \mathbf{Y} + \mathbf{X}$ $(\mathbf{T6'}) \quad \mathbf{X} \cdot \mathbf{Y} = \mathbf{Y} \cdot \mathbf{X}$ (Associativity) (T7) (X + Y) + Z = X + (Y + Z)(T7') (X.Y). Z = X. (Y.Z)

T6-T7, T6' -T7' are similar to commutative and associative laws for addition and multiplication of integers and reals.

#10 Lec # 4 Winter 2001 12-11-2001

Two- and Three-Variable Theorems (Continued) (Distributivity)

(T8) $X \cdot Y + X \cdot Z = X \cdot (Y + Z)$

- (T8') $(X + Y) \cdot (X + Z) = X + Y \cdot Z$
- T8 allows to multiply-out an expression to get sum-of-products form (distribute logical multiplication over logical addition): For example:

V.(W + X).(Y + Z) = V.W.Y + V.W.Z + V.X.Y + V.X.Z

sum-of-products form

• T8' allows to add-out an expression to get a product-of-sums form *(distribute logical addition over logical multiplication)*: For example:

 $(V \cdot W \cdot X) + (Y \cdot Z) = (V + Y) \cdot (V + Z) \cdot (W + Y) \cdot (W + Z) \cdot (X + Y) \cdot (X + Z)$

product-of-sums form

EECC341 - Shaaban

#11 Lec # 4 Winter 2001 12-11-2001

Theorem Proof using Truth Table

- Can use truth table to prove T8 by perfect induction.
- i.e Prove that: $X \cdot Y + X \cdot Z = X \cdot (Y + Z)$

(i) Construct truth table for both sides of above equality.

Χ	у	Z	y + z	x.(y+z)	x.y	X.Z	x.y + x.z
0	0	0	0	0	0	0	0
0	0	1	1	0	0	0	0
0	1	0	1	0	0	0	0
0	1	1	1	0	0	0	0
1	0	0	0	0	0	0	0
1	0	1	1	1	0	1	1
1	1	0	1	1	1	0	1
1	1	1	1	1	1	1	1

(ii) Check that from truth table check that that $X \cdot Y + X \cdot Z = X \cdot (Y + Z)$

This is satisfied because output column values for $X \cdot Y + X \cdot Z$ and output column values for $X \cdot (Y + Z)$ are equal for all cases.

#12 Lec # 4 Winter 2001 12-11-2001

Two- and Three-Variable Theorems (Continued)

(Covering)

(T9) $X + X \cdot Y = X$ (T9') $X \cdot (X + Y) = X$

(Combining)

(T10) $X \cdot Y + X \cdot Y' = X$ (T10') $(X + Y) \cdot (X + Y') = X$

• **T9-T10 used in the minimization of logic functions.**

#13 Lec # 4 Winter 2001 12-11-2001

Two- and Three-Variable Theorems (Continued)

(Consensus)

(T11) X.Y + X'.Z + Y.Z = X.Y + X'.Z (T11') $(X + Y) \cdot (X' + Z) \cdot (Y + Z) = (X + Y) \cdot (X' + Z)$

- In T11 the term Y. Z is called the consensus of the term X. Y and the term X'. Z:
 - If $Y \cdot Z = 1$, then either X · Y or X' · Z must also be 1.
 - Thus the term Y . Z is redundant and may be dropped.

#14 Lec # 4 Winter 2001 12-11-2001

n-Variable Theorems

(Generalized idempotency)

(T12) X + X + ... + X = X(T12') $X \cdot X \cdot ... \cdot X = X$

(DeMorgan's theorems)

(T13)
$$(X_1 \cdot X_2 \cdot \ldots \cdot X_n)' = X_1' + X_2' + \ldots + X_n'$$

(T13') $(X_1 + X_2 + \ldots + X_n)' = X_1' \cdot X_2' \cdot \ldots \cdot X_n'$

(T13), (T13') are probably the most commonly used theorems of switching algebra.

#15 Lec # 4 Winter 2001 12-11-2001

Examples Using DeMorgan's theorems

Example: Equivalence of NAND Gate:

A two-input NAND Gate has the output expression $Z = (X \cdot Y)'$ using (T13) $Z = (X \cdot Y)' = (X' + Y')$

The function of a NAND gate can be achieved with an OR gate with an inverter at each input.

Example: Equivalence of NOR Gate
A two-input NOR Gate has the output expression Z=(X+Y)'
using (T13') Z = (X + Y)' = X'. Y'
The function of a NOR gate can be achieved with an AND gate with an inverter at each input.

n-Variable Theorems (Continued) (Generalized DeMorgran's theorem) (T14) $[F(X_1, X_2, ..., X_n, +, .)]' = F(X_1', X_2', ..., X_n', .., +)$

• States that given any n-variable logic expression its complement can be found by swapping + and . and complementing all variables.

```
Example:

F(W,X,Y,Z) = (W'.X) + (X.Y) + (W.(X' + Z'))

= ((W)' \cdot X) + (X \cdot Y) + (W.((X)' + (Z)'))

[F(W,X,Y,Z)]' = ((W')' + X') \cdot (X' + Y') \cdot (W' + ((X')' \cdot (Z')'))

Using T4, (X')' = X simplifies it to:

[F(W,X,Y,Z)]' = (W + X') \cdot (X' + Y') \cdot (W' + (X \cdot Z))

EECC341 - Shaaban
```

#17 Lec # 4 Winter 2001 12-11-2001