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Types of Logic CircuitsTypes of Logic Circuits
• Combinational logic circuits:

– Outputs depend only on its current inputs.

– A combinational circuit may contain an arbitrary number of
logic gates and inverters but no feedback loops.

• A feedback loop is a connection from the output of one gate to
propagate back into the input of that same gate

– The function of a combinational circuit represented by a logic
diagram is formally described using logic expressions and truth
tables.

•  Sequential logic circuits:
– Outputs depend not only on the current inputs but also on the

past sequences of inputs.

– Sequential logic circuits contain combinational logic in addition
to memory elements formed with feedback loops.

– The behavior of sequential circuits is formally described with
state transition  tables and diagrams.
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Sequential CircuitsSequential Circuits
• The general structure of a sequential Circuit:

– Combinational logic + Memory Elements

Combinational
logic

Memory
elements

Combinational
outputs Memory outputs

External inputs

Memory element: a device that can remember value indefinitely, 
or change value on command from its inputs.

•  Examples: latches and flip-flops
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Memory Element Example:Memory Element Example:
  S-R (Set-Reset) LatchS-R (Set-Reset) Latch

• The output Q represents the state of the latch

• When Q is HIGH, the latch is in SET state.

• When Q is LOW, the latch is in RESET state

R

S

Q

Q'

S-R latch using 
NOR gates

S R Q Q'

0 0 NC NC No change.  Latch
remained in present state.

1 0 1 0 Latch SET.

0 1 0 1 Latch RESET.
1 1 0 0 Invalid condition.

Characteristics or function
table
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•• Combinational Combinational Circuit Analysis:Circuit Analysis:
– Start with a logic diagram of the circuit.

– Proceed to a formal description of the function of the
circuit using truth tables or logic expressions.

•• CombinationalCombinational Circuit Synthesis: Circuit Synthesis:
– May start with an informal (possibly verbal) description

of the function performed.

– A formal description of the circuit function in terms of a
truth table or logic expression.

– The logic expression is manipulated using Boolean (or
switching) algebra and optimized to minimize  the
number of gates needed, or to use specific type of gates.

– A logic diagram is generated based on the resulting
logic expression.
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Boolean or Switching Algebra
• Set of Elements: {0,1}

• Set of Operations: { . , + ,  ’ }    AND  (logical multiplication, .), OR
(logical addition, + ) ,  NOT

• Symbolic variables such as X used to represent the condition of a
logic signal  (0 or 1, low or high, on or off).

• Switching Algebra Axioms (or postulates):

– Minimal set basic definitions (A1-A5, A1’-A5’) that are assumed
to be true and completely define switching algebra.

– All other switching algebra theorems (T1-T15) can be proven
using these axioms as a starting point.

x y x . y
0 0 0
0 1 0
1 0 0
1 1 1

x y x + y
0 0 0
0 1 1
1 0 1
1 1 1

x x’
0 1
1 0

AND OR NOT

x x'x
x+yy

x.y
x
y
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Switching Algebra Axioms Axioms

• First two axioms state that a variable X can only take on
only one of two values:

       (A1)     X = 0   if  X  ≠≠ 1

       (A1’)    X = 1   if  X ≠≠ 0

• Not Axioms, formally define X’  (X prime or NOT X):

                 (A2)      If   X = 0, then X’ = 1

              (A2’)     if   X = 1, then, X’ = 0

Note:  Above axioms are stated in pairs with only difference
 being the interchange of the symbols 0 and 1.
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Three More Switching Algebra Axioms
• The following three Boolean Algebra axioms state and

formally define the AND, OR operations:

(A3) 0 . 0  =  0

(A3’) 1 + 1 = 1

 (A4) 1 . 1  = 1

(A4’) 0 + 0 = 0

(A5) 0 . 1 = 1 .0 = 0

(A5’) 1 + 0  = 0 + 1 = 1

Axioms A1-A5, A1’-A5’ completely define switching algebra.
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Switching Algebra:  Single-Variables Theorems

• Switching-algebra theorems are statements known to be
always true (proven using axioms) that allow us to
manipulate algebraic logic expressions to allow for simpler
analysis.

     (e.g .   X + 0 = X allow us to replace every X +0 with X)

The Theorems:  (T1-T5, T1’-T5’)

(T1)    X + 0 = X      (T1’)   X . 1 = X   (Identities)

(T2)    X + 1  = 1      (T2’)  X . 0 = 0    (Null elements)

(T3)     X + X  = X    (T3’)   X . X = X  (Idempotency)

(T4)     (X’)’  = X                                            (Involution)

(T5)     X + X’  = 1    (T5’)  X . X’ = 0   (Complements)
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Perfect Induction

• Most theorems in switching algebra are simple to
prove using perfect induction:

   Since a switching variable can only take the values 0
and 1 we can prove a theorem involving a single
variable X by proving it true for X = 0 and X =1

Example:   To prove    (T1)       X + 0 = X

                  [X = 0]      0 + 0  = 0   true according to axiom A4’

                  [X = 1]      1 + 0  = 1   true according to axiom A5’
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Switching Algebra:

Two- and Three-Variable Theorems

(Commutativity)

(T6)   X + Y = Y + X

(T6’)   X . Y = Y . X

(Associativity)

(T7)    (X + Y) + Z =  X + (Y + Z)

(T7’)   (X . Y) . Z = X . (Y . Z)

T6-T7, T6’ -T7’ are similar to commutative and associative laws for 
addition and multiplication of integers and reals. 
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Two- and Three-Variable Theorems (Continued)
(Distributivity)

(T8)    X . Y + X . Z = X . (Y + Z)

(T8’)   (X + Y) . (X + Z) = X + Y . Z

• T8 allows to multiply-out an expression to get sum-of-products
form  (distribute logical multiplication over logical addition):

   For example:

     V . (W + X) . (Y +  Z)   =   V .W . Y + V. W. Z + V. X . Y + V. X . Z

                                                         sum-of-products form

• T8’ allows to add-out an expression to get a product-of-sums form
(distribute logical addition over logical multiplication):

     For example:
(V . W . X) + (Y . Z )  =  (V + Y) . (V + Z) . (W + Y) . (W + Z) . (X + Y) . (X + Z)

                                                                      product-of-sums form
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Theorem Theorem Proof using Truth TableProof using Truth Table
• Can use truth table to prove T8 by perfect induction.
• i.e    Prove that:   X . Y + X . Z = X . (Y + Z)

(i) Construct truth table for both sides of above equality.

x y z y + z x.(y + z) x.y x.z x.y + x.z
0 0 0 0 0 0 0 0
0 0 1 1 0 0 0 0
0 1 0 1 0 0 0 0
0 1 1 1 0 0 0 0
1 0 0 0 0 0 0 0
1 0 1 1 1 0 1 1
1 1 0 1 1 1 0 1
1 1 1 1 1 1 1 1

(ii) Check that   from truth table check that that  X . Y + X . Z  =  X . (Y + Z)

This is satisfied because output column  values for  X . Y + X . Z  and output
column values for  X . (Y + Z)   are equal for all cases.
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Two- and Three-Variable Theorems (Continued)

(Covering)

(T9)    X + X . Y = X

(T9’)   X . (X + Y) = X

(Combining)

(T10)    X . Y + X . Y’  =  X

(T10’)   (X + Y) . (X + Y’) = X

• T9-T10 used in the minimization of logic functions.
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(Consensus)

(T11)    X . Y + X’. Z + Y . Z  = X . Y + X’ . Z

(T11’)   (X + Y) . ( X’ + Z) . (Y + Z) = (X + Y) . (X’ + Z)

• In T11 the term  Y. Z is called the consensus of  the term
X . Y  and the term  X’ . Z:

– If  Y . Z = 1,  then either X . Y or  X’ . Z  must also be 1.

– Thus the term Y . Z is redundant and may be dropped.

Two- and Three-Variable Theorems (Continued)
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n-Variable Theorems

(Generalized idempotency)

(T12)      X + X +  . . . + X = X

(T12’)     X . X .    . . .   . X = X

(DeMorgan’s theorems)

(T13)       (X1 . X2 .  . . .  . Xn)’  =   X1’  +  X2’  + . . . + Xn’

(T13’)      (X1 + X2 +  . . . + Xn)’   = X1’ . X2’ . . . . . Xn’

       (T13), (T13’) are probably the most commonly

       used theorems of switching algebra.
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Examples Using DeMorgan’s theorems

Example:   Equivalence of NAND Gate:

A two-input NAND Gate has the output expression
Z = (X . Y)’ using  (T13)        Z =  (X . Y)’   =   (X’ + Y’)

The function of a NAND gate can be achieved with an OR
gate with an inverter at each input.

Example:   Equivalence of NOR Gate

A two-input NOR Gate has the output expression Z=(X+Y)’

using (T13’)        Z = (X + Y)’ =  X’ . Y’

The function of a NOR gate can be achieved with an AND
gate with an inverter at each input.
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n-Variable Theorems (Continued)
(Generalized DeMorgran’s theorem)

(T14)  [F(X1, X2, . . ., Xn, +, .)]’ = F(X1’, X2’, . . ., Xn’, . , +)

• States that given any n-variable logic expression its
complement can be found by swapping + and .  and
complementing all variables.

Example:

F(W,X,Y,Z) = (W’.X) + ( X.Y) + (W.(X’ + Z’))

                      = ((W)’ . X) + (X. Y) + (W.((X)’ + (Z)’))

[F(W,X,Y,Z)]’  =  ((W’)’ + X’) .(X’ + Y’).(W’ + ((X’)’.(Z’)’))

Using T4,   (X’)’  = X   simplifies it to:

[F(W,X,Y,Z)]’ = (W + X’) . (X’ + Y’) . (W’ + (X . Z))


