
EECC341 - ShaabanEECC341 - Shaaban
#1 Midterm Review Winter 2001 1-22-2002

• Conversion between number systems:
– Radix-r to decimal.

– Decimal to binary.

– Decimal to Radix-r

– Binary to Octal

– Binary to Hex

• Binary arithmetic operations.

• Negative number representations.

• Switching Algebra Axioms & Theorems.

• Proof of identities:

– Using logic expression algebraic manipulation.

– Using Truth Table (perfect induction).

EECC341 - ShaabanEECC341 - Shaaban
#2 Midterm Review Winter 2001 1-22-2002

• Standard Representations of Logic Functions:
– Truth Table.

– Canonical Sum Representation:

• Full sum of minterms expression, or using ΣΣ notation.
– Canonical Product Representation:

• Full product of maxterms expression, or using ΠΠ notation.

•• CombinationalCombinational Circuit Analysis/ Circuit Analysis/ Synthesis.

• Combinational Circuit Minimization using K-maps:
– Sum of Products (SOP) Minimization using K-maps:

• Prime implicants, distinguished 1-cells, essential prime implicants

• Minimization with Don’t care Input Combinations.

– Product of Sums (POS) Minimization using K-maps:
• Prime implicates, distinguished 0-cells, essential prime implicates

• Detecting/Eliminating Static Hazards Using K-maps.

EECC341 - ShaabanEECC341 - Shaaban
#3 Midterm Review Winter 2001 1-22-2002

Positional Number Systems
• A number system consists of an order set of symbols (digits) with relations

defined for +,-,*, /

• The radix (or base) of the number system is the total number of digits
allowed in the the number system.

– Example, for the decimal number system:
• Radix, r = 10, Digits allowed = 0,1, 2, 3, 4, 5, 6, 7, 8, 9

• In positional number systems, a number is represented by a string of digits,
where each digit position has an associated weight.

• The value of a number is the weighted sum of the digits.

• The general representation of an unsigned number D with whole and
fraction portions number in a number system with radix r:

 Dr = d p-1 d p-2 ….. d1 d0.d-1 d-2 …. D-n

• The number above has p digits to the left of the radix point and n fraction
digits to the right.

• A digit in position i has as associated weight ri

• The value of the number is the sum of the digits multiplied by the associated
weight ri :

rd
i1p

ni i
D ×= ∑ −

−=

EECC341 - ShaabanEECC341 - Shaaban
#4 Midterm Review Winter 2001 1-22-2002

Positional Number Systems

• For example in the decimal number system:

 5185.6810 = 5x103 + 1x102 + 8x101 + 5x100 + 6 x 10-1 + 8 x 10-2

 = 5x1000 + 1x100 + 8x10 + 5 x 1 + 6x.1 + 8x.01

• For the binary number system with radix = 2, digits 0, 1

 D2 = dp-1 ×× 2p-1 ….. d1 ×× 21 + d0 . 2
0 + d-1 ×× 2-1 + d-2 ×× 2-2 …..

• For Example:

 100112 = 1 ×× 16 + 0 ×× 8 + 0 ×× 4 + 1 ×× 2 + 1 ×× 1 = 1910
 | |

 MSB LSB (least significant bit)

(most significant bit)

 101.0012 = 1x4 + 0x2 + 1x1 + 0x.5 + 0x.25 + 1x.125 = 5.12510

rd
i1p

ni i
D ×= ∑ −

−=

Number: Dr = d p-1 d p-2 ….. d1 d0.d-1 d-2 …. D-n

Value:

Binary Point

EECC341 - ShaabanEECC341 - Shaaban
#5 Midterm Review Winter 2001 1-22-2002

Number Systems Used in ComputersNumber Systems Used in Computers
Name
of Radix Radix Set of Digits Example

Decimal r=10

r=2

r=16

r= 8

 {0,1,2,3,4,5,6,7,8,9} 25510

Binary

 {0,1,2,3,4,5,6,7} 3778

 {0,1} 111111112

 {0,1,2,3,4,5,6,7,8,9,A, B, C, D, E, F} FF16

Octal

Hexadecimal

Binary 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

Hex 0 1 2 3 4 5 6 7 8 9 A B C D E F

Decimal 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

EECC341 - ShaabanEECC341 - Shaaban
#6 Midterm Review Winter 2001 1-22-2002

Radix-r to Decimal ConversionRadix-r to Decimal Conversion
• The decimal value of a number in any radix r is found by converting

each digit to its radix 10 equivalent and expanding the value using
radix arithmetic:

• Examples:

 1101.1012 = 1××23 + 1××22 + 1××20 + 1××2-1 + 1××2-3

 = 8 + 4 + 1 + 0.5 + 0.125 = 13.62510

 572.68 = 5××82 + 7××81 + 2××80 + 6××8-1

 = 320 + 56 + 16 + 0.75 = 392.7510

 2A.816 = 2××161 + 10××160 + 8××16-1

 = 32 + 10 + 0.5 = 42.510

 132.34 = 1××42 + 3××41 + 2××40 + 3××4-1

 = 16 + 12 + 2 + 0.75 = 30.7510

 341.245 = 3××52 + 4××51 + 1××50 + 2××5-1 + 4××5-2

 = 75 + 20 + 1 + 0.4 + 0.16 = 96.5610

rd
i1p

ni i
D ×= ∑ −

−=

EECC341 - ShaabanEECC341 - Shaaban
#7 Midterm Review Winter 2001 1-22-2002

Decimal-to-Binary ConversionDecimal-to-Binary Conversion
• Separate the decimal number into whole and fraction portions.

• To convert the whole number portion to binary, use successive
division by 2 until the quotient is 0. The remainders form the
answer, with the first remainder as the least significant bit (LSB) and
the last as the most significant bit (MSB).

• Example: Convert 17910 to binary:
 179 / 2 = 89 remainder 1 (LSB)

 / 2 = 44 remainder 1

 / 2 = 22 remainder 0

 / 2 = 11 remainder 0

 / 2 = 5 remainder 1

 / 2 = 2 remainder 1

 / 2 = 1 remainder 0

 / 2 = 0 remainder 1 (MSB)

 17910 = 101100112

EECC341 - ShaabanEECC341 - Shaaban
#8 Midterm Review Winter 2001 1-22-2002

Decimal-to-Binary ConversionDecimal-to-Binary Conversion
• To convert decimal fractions to binary, repeated multiplication by 2 is

used, until the fractional product is 0 (or until the desired number of
binary places). The whole digits of the multiplication results produce
the answer, with the first as the MSB, and the last as the LSB.

• Example: Convert 0.312510 to binary

 Result Digit

 .3125 ×× 2 = 0.625 0 (MSB)

 .625 ×× 2 = 1.25 1

 .25 ×× 2 = 0.50 0

 .5 ×× 2 = 1.0 1 (LSB)

 0.312510 = .01012

EECC341 - ShaabanEECC341 - Shaaban
#9 Midterm Review Winter 2001 1-22-2002

Decimal to Radix-r ConversionDecimal to Radix-r Conversion
• Separate the decimal number into whole and fraction portions.

• To convert the whole number portion to binary, use successive
division by r until the quotient is 0. The remainders form the
answer, with the first remainder as the least significant digit (LSD)
and the last as the most significant digit (MSD).

• To convert decimal fractions to radix-r, repeated multiplication by r
is used, until the fractional product is 0 (or until the desired number
of binary places). The whole digits of the multiplication results
produce the answer, with the first as the MSD, and the last as the
LSD.

• Example: Convert 46710 to octal

 467 / 8 = 58 remainder 3 (LSD)

 / 8 = 7 remainder 2

 / 8 = 0 remainder 7 (MSD)

 46710 = 7238

EECC341 - ShaabanEECC341 - Shaaban
#10 Midterm Review Winter 2001 1-22-2002

Binary to Octal ConversionBinary to Octal Conversion
• Separate the whole binary number portion into groups of

3 beginning at the binary point and working to the left.
Add leading zeroes as necessary.

• Separate the fraction binary number portion into groups of
3 beginning at the binary point and working to the right.
Add trailing zeroes as necessary.

• Convert each group of 3 to the equivalent octal digit.

• Example:

 3564.87510 = 110 111 101 100.1112

 = (6 ×× 83) + (7 ×× 82) + (5 ×× 81)+(4 ×× 80)+(7 ×× 8-1)

 = 6754.78

EECC341 - ShaabanEECC341 - Shaaban
#11 Midterm Review Winter 2001 1-22-2002

Binary to Hexadecimal ConversionBinary to Hexadecimal Conversion

• Separate the whole binary number portion into groups of
4 beginning at the binary point and working to the left.
Add leading zeroes as necessary.

• Separate the fraction binary number portion into groups
of 4 beginning at the binary point and working to the
right. Add trailing zeroes as necessary.

• Convert each group of 4 to the equivalent hexadecimal
digit.

• Example:

 3564.87510 = 1101 1110 1100.11102

 = (D ×× 162) + (E ×× 161) + (C ×× 160)+(E ×× 16-1)

 = DEC.E16

EECC341 - ShaabanEECC341 - Shaaban
#12 Midterm Review Winter 2001 1-22-2002

Conversion between Number Systems SummaryConversion between Number Systems Summary
• Radix-r to decimal:

– Multiply digits with their corresponding weights and add

• Decimal to binary (radix 2)

§ Whole numbers: repeated division by 2

§ Fractions: repeated multiplication by 2

• Decimal to radix-r

§ Whole numbers: repeated division by r

§ Fractions: repeated multiplication by r

•• Binary to OctalBinary to Octal

§ Substitute groups of three bits with corresponding octal digit.

•• Binary to HexadecimalBinary to Hexadecimal

§ Substitute groups of four bits with corresponding hexadecimalhexadecimal
digit.

rd
i1p

ni i
D ×= ∑ −

−=

EECC341 - ShaabanEECC341 - Shaaban
#13 Midterm Review Winter 2001 1-22-2002

Binary Arithmetic OperationsBinary Arithmetic Operations
AdditionAddition

• Similar to decimal number addition, two binary

numbers are added by adding each pair of bits together
with carry propagation.

• Addition Example:

 1 0 1 1 1 1 0 0 0 Carry

 X 190 1 0 1 1 1 1 1 0

 Y + 141 + 1 0 0 0 1 1 0 1

 X + Y 331 1 0 1 0 0 1 0 1 1

EECC341 - ShaabanEECC341 - Shaaban
#14 Midterm Review Winter 2001 1-22-2002

Binary Arithmetic OperationsBinary Arithmetic Operations
SubtractionSubtraction

• Two binary numbers are subtracted by subtracting each

pair of bits together with borrowing, where needed.

• Subtraction Example:

 0 0 1 1 1 1 1 0 0 Borrow

 X 229 1 1 1 0 0 1 0 1

 Y - 46 - 0 0 1 0 1 1 1 0

 183 1 0 1 1 0 1 1 1

EECC341 - ShaabanEECC341 - Shaaban
#15 Midterm Review Winter 2001 1-22-2002

Negative Binary Number Representations
• Signed-Magnitude Representation:

– For an n-bit binary number:

 Use the first bit (most significant bit, MSB) position to
 represent the sign where 0 is positive and 1 is negative.

 Ex. 1 1 1 1 1 1 1 12 = - 12710

– Remaining n-1 bits represent the magnitude which may range
from:

 -2(n-1) + 1 to 2(n-1) - 1

– This scheme has two representations for 0; i.e., both positive and
negative 0: for 8 bits: 00000000, 10000000

– Arithmetic under this scheme uses the sign bit to indicate the
nature of the operation and the sign of the result, but the sign bit is
not used as part of the arithmetic.

Sign Magnitude

EECC341 - ShaabanEECC341 - Shaaban
#16 Midterm Review Winter 2001 1-22-2002

Negative Binary Number Representations

• Two’s complement representation:

• MSB is the sign (MSB = 1 indicates a negative number)

• To negate a number complement all bits and add 1

• ex. 11910 = 01110111 complement bits

 10001000

 +1 add 1

 100010012 = - 11910

EECC341 - ShaabanEECC341 - Shaaban
#17 Midterm Review Winter 2001 1-22-2002

Properties of Two's Complement NumbersProperties of Two's Complement Numbers
• X plus the complement of X equals 0.

• There is one unique 0.

• Positive numbers have 0 as their leading bit (MSB);
while negatives have 1 as their MSB.

• The range for an n-bit binary number in 2’s
complement representation is:

 from -2(n-1) to 2(n-1) - 1

• The complement of the complement of a number is the
original number.

• Subtraction is done by addition to the 2’s complement of
the number.

EECC341 - ShaabanEECC341 - Shaaban
#18 Midterm Review Winter 2001 1-22-2002

Value of Value of Two's Complement NumbersTwo's Complement Numbers

• For an n-bit 2’s complement number the weights of the
bits is the same as for unsigned numbers except of the
MSB or sign bit where the weight is -2n-1, thus the
value of the n-bit 2’s complement number is given by:

 D 2’s-complement = dn-1 ×× -2 n-1 + dn-2 ×× 2n-2 ….. d1 ×× 21 + d0

For example:

 the value of the 4-bit 2’s complement number 1011 is given by:

 value = d3 ×× -2 3 + d2 ×× 22 + d1 ×× 21 + d0

 = 1 ×× -2 3 + 0 ×× 22 + 1 ×× 21 + 1

 = -8 + 0 + 2 + 1

 = - 8 +3 = -5

EECC341 - ShaabanEECC341 - Shaaban
#19 Midterm Review Winter 2001 1-22-2002

Extending Extending Two's Complement Numbers:Two's Complement Numbers:
Sign ExtensionSign Extension

• An n-bit 2’s complement number can converted to an m-bit
number where m>n by appending m-n copies of the sign
bit to the left of the number. This process is called sign
extension.

• Example: To convert the 4-bit 2’s complement number 1011 to
an 8-bit representation, the sign bit (here = 1) must be extended by
appending four 1’s to left of the number:

 1011 4-bit 2’s-complement = 11111011 8-bit 2’s-complement

 To verify that the value of the 8-bit number is still -5

 value of 8-bit number = -27 + 26 + 25 + 24 + 23 +2 +1

 = -128 + 64 + 32 + 16 +8 +2+1

 = -128 + 123 = -5

EECC341 - ShaabanEECC341 - Shaaban
#20 Midterm Review Winter 2001 1-22-2002

Examples:

 4 0100 -2 1110

 + -7 1001 + -6 1010

 -3 1101 -8 1 1000

• Overflow occurs if signs (MSBs) of both operands are
the same and the sign of the result is different.

• Overflow can also be detected if the carry in the sign
position is different from the carry out of the sign
position.

Two’ complement addition/subtraction

Ignore carry out from MSB

EECC341 - ShaabanEECC341 - Shaaban
#21 Midterm Review Winter 2001 1-22-2002

Negative Binary Number Representations
•• One’s-Complement representationOne’s-Complement representation

• MSB is the sign (MSB = 1 indicates a negative number)

• Negative numbers are found by complementing all bits

• ex. 11910 = 01110111

 -11910 = 10001000

• The range of values for an n-bit binary number in 1’s
complement representation is:

• from -2(n-1) +1 to 2(n-1) - 1
• One’s-complement addition/subtraction:

 If there is a carry out of the sign position add 1

Ex. -2 1101

 + -5 1010

 -7 10111

 + 1

 1000

EECC341 - ShaabanEECC341 - Shaaban
#22 Midterm Review Winter 2001 1-22-2002

Value of Value of One's Complement NumbersOne's Complement Numbers

• For an n-bit 2’s complement number the weights of the
bits is also the same as for unsigned numbers except of
the MSB or sign bit where the weight is -(2n-1 +1), thus
the value of the n-bit 1’s complement number is given
by:

 D 1’s-complement = dn-1 ×× -(2 n-1 +1) + dn-2 ×× 2n-2 ….. d1 ×× 21 + d0

For example:

 the value of the 4-bit 1’s complement number 1011 is given by:

 value = d3 ×× -(2 3 +1) + d2 ×× 22 + d1 ×× 21 + d0

 = 1 ×× -(2 3 +1) + 0 ×× 22 + 1 ×× 21 + 1

 = -7 + 0 + 2 + 1

 = - 7 +3 = -4

EECC341 - ShaabanEECC341 - Shaaban
#23 Midterm Review Winter 2001 1-22-2002

Binary MultiplicationBinary Multiplication
• Multiplication is achieved by adding a list of shifted

multiplicands according to the digits of the multiplier.

• Ex. (unsigned)

 11 1 0 1 1 multiplicand (4 bits)

X 13 X 1 1 0 1 multiplier (4 bits)

-------- -------------------

 33 1 0 1 1

 11 0 0 0 0

______ 1 0 1 1

 143 1 0 1 1

 1 0 0 0 1 1 1 1 Product (8 bits)

EECC341 - ShaabanEECC341 - Shaaban
#24 Midterm Review Winter 2001 1-22-2002

Binary DivisionBinary Division
• Shift and subtract

Example:
 19 10011 quotient
11 217 1011 11011001 dividend
 11 1011 shifted divisor
 107 0101 reduced dividend
 99 0000 shifted divisor
 8 1010 reduced dividend
 0000 shifted divisor
 10100 reduced dividend
 1011 shifted divisor
 10011 reduced dividend
 1011 shifted divisor
 1000 remainder

EECC341 - ShaabanEECC341 - Shaaban
#25 Midterm Review Winter 2001 1-22-2002

Boolean or Switching Algebra
• Set of Elements: {0,1}

• Set of Operations: { . , + , ’ } AND (logical multiplication, .), OR
(logical addition, +) , NOT

• Symbolic variables such as X used to represent the condition of a
logic signal (0 or 1, low or high, on or off).

• Switching Algebra Axioms (or postulates):

– Minimal set basic definitions (A1-A5, A1’-A5’) that are assumed
to be true and completely define switching algebra.

– All other switching algebra theorems (T1-T15) can be proven
using these axioms as a starting point.

x y x . y
0 0 0
0 1 0
1 0 0
1 1 1

x y x + y
0 0 0
0 1 1
1 0 1
1 1 1

x x’
0 1
1 0

AND OR NOT

x x'x
x+yy

x.y
x
y

EECC341 - ShaabanEECC341 - Shaaban
#26 Midterm Review Winter 2001 1-22-2002

Switching Algebra Axioms & Theorems
(A1) X = 0 if X ≠≠ 1 (A1’) X = 1 if X ≠≠ 0
(A2) If X = 0, then X’ = 1 (A2’) if X = 1, then, X’ = 0
(A3) 0 . 0 = 0 (A3’) 1 + 1 = 1
(A4) 1 . 1 = 1 (A4’) 0 + 0 = 0
(A5) 0 . 1 = 1 . 0 = 0 (A5’) 1 + 0 = 0 + 1 = 1

(T1) X + 0 = X (T1’) X . 1 = X (Identities)
(T2) X + 1 = 1 (T2’) X . 0 = 0 (Null elements)
(T3) X + X = X (T3’) X . X = X (Idempotency)
(T4) (X’)’ = X (Involution)
(T5) X + X’ = 1 (T5’) X . X’ = 0 (Complements)
(T6) X + Y = Y + X (T6’) X . Y = Y . X (Commutativity)
(T7) (X + Y) + Z = X + (Y + Z) (T7’) (X . Y) . Z = X . (Y . Z) (Associativity)
(T8) X . Y + X . Z = X . (Y + Z) (T8’) (X + Y) . (X + Z) = X + Y . Z (Distributivity)
(T9) X + X . Y = X (T9’) X . (X + Y) = X (Covering)
(T10) X . Y + X . Y’ = X (T10’) (X + Y) . (X + Y’) = X (Combining)
(T11) X . Y + X’. Z + Y . Z = X . Y + X’ . Z
(T11’) (X + Y) . (X’ + Z) . (Y + Z) = (X + Y) . (X’ + Z) (Consensus)
(T12) X + X + . . . + X = X (T12’) X . X X = X (Generalized idempotency)

(T13) (X1 . X2 Xn)’ = X1’ + X2’ + . . . + Xn’

(T13’) (X1 + X2 + . . . + Xn)’ = X1’ . X2’ Xn’ (DeMorgan’s theorems)

(T14) [F(X1, X2, . . ., Xn, +, .)]’ = F(X1’, X2’, . . ., Xn’, . , +) (Generalized DeMorgran’s theorem)

EECC341 - ShaabanEECC341 - Shaaban
#27 Midterm Review Winter 2001 1-22-2002

Perfect InductionPerfect Induction

• Most theorems in switching algebra are simple to
prove using perfect induction:

 Since a switching variable can only take the values 0
and 1 we can prove a theorem involving a single
variable X by proving it true for X = 0 and X =1

Example: To prove (T1) X + 0 = X

 [X = 0] 0 + 0 = 0 true according to axiom A4’

 [X = 1] 1 + 0 = 1 true according to axiom A5’

EECC341 - ShaabanEECC341 - Shaaban
#28 Midterm Review Winter 2001 1-22-2002

Theorem Theorem Proof using Truth TableProof using Truth Table
• Can use truth table to prove T8 by perfect induction.
• i.e Prove that: X . Y + X . Z = X . (Y + Z)

(i) Construct truth table for both sides of above equality.

x y z y + z x.(y + z) x.y x.z x.y + x.z
0 0 0 0 0 0 0 0
0 0 1 1 0 0 0 0
0 1 0 1 0 0 0 0
0 1 1 1 0 0 0 0
1 0 0 0 0 0 0 0
1 0 1 1 1 0 1 1
1 1 0 1 1 1 0 1
1 1 1 1 1 1 1 1

(ii) Check that from truth table check that that X . Y + X . Z = X . (Y + Z)

This is satisfied because output column values for X . Y + X . Z and output
column values for X . (Y + Z) are equal for all cases.

EECC341 - ShaabanEECC341 - Shaaban
#29 Midterm Review Winter 2001 1-22-2002

Logic Expression Algebraic Manipulation ExampleLogic Expression Algebraic Manipulation Example
• Prove that the following identity is true using Algebraic

expression Manipulation : (one can also prove it using a truth table)

 X .Y + X . Z = ((X’ + Y’) . (X’ + Z’))’
– Starting from the left hand side of the identity:

 Let F = X .Y + X . Z

 A = X . Y B = X . Z

 Then F = A + B

– Using DeMorgan’s theorem T 13 on F:

 F = A + B = (A’ . B’)’ (1)

– Using DeMorgan’s theorem T 13’ on A, B:

 A = X . Y = (X’ + Y’)’ (2)

 B = X . Z = (X’ + Z’)’ (3)

– Substituting A, B from (2), (3), back in F in (1) gives:

 F = (A’ . B’)’ = ((X’ + Y’) . (X’ + Z’))’

 Which is equal to the right hand side of the identity.

EECC341 - ShaabanEECC341 - Shaaban
#30 Midterm Review Winter 2001 1-22-2002

Standard Representations of Logic Functions
• Truth table for n-variable logic function:

 Input combinations are arranged in 2n rows in ascending binary

order, and the output values are written in a column next to the rows.
• Practical for functions with a small number of variables.

• The general structure of a 3-variable truth table is given by:

Row X Y Z F(X,Y,Z)
 0 0 0 0 F(0,0,0)
 1 0 0 1 F(0,0,1)
 2 0 1 0 F(0,1,0)
 3 0 1 1 F(0,1,1)
 4 1 0 0 F(1,0,0)
 5 1 0 1 F(1,0,1)
 6 1 1 0 F(1,1,0)
 7 1 1 1 F(1,1,1)

Truth table for a specific
 function:
Row X Y Z F
 0 0 0 0 1
 1 0 0 1 0
 2 0 1 0 0
 3 0 1 1 1
 4 1 0 0 1
 5 1 0 1 0
 6 1 1 0 1
 7 1 1 1 1

EECC341 - ShaabanEECC341 - Shaaban
#31 Midterm Review Winter 2001 1-22-2002

Logic Function Representation Definitions
• A literal: is a variable or a complement of a variable

 Examples: X, Y, X’, Y’

• A product term: is a single literal, or a product of two or more literals.
Examples: Z’ W.Y.Y X.Y’.Z W’.Y’.Z

• A sum-of-products expression: is a logical sum of product terms.

 Example: Z’ + W.X.Y + X.Y’.Z + W’.Y’.Z

• A sum term: is a single literal or logical sum of two or more literals

 Examples: Z’ W + X + Y X + Y’ + Z W’ + Y’ + Z

• A product-of-sums expression: is a logical product of sum terms.

 Example: Z’. (W + X + Y) . (X + Y’ + Z) . (W’ + Y’ + Z)

• A normal term: is a product or sum term in which no variable appears
more than once

 Examples of non-normal terms: W.X.X.Y’ W+W+X’+Y X.X’.Y

 Examples of normal terms: W . X . Y’ W + X’ + Y

EECC341 - ShaabanEECC341 - Shaaban
#32 Midterm Review Winter 2001 1-22-2002

Logic Function Representation Definitions
• Minterm
 An n-variable minterm is a normal product term with n literals.

 There are 2n such products terms.

 Example of 4-variable minterms:

 W.X’.Y’.Z’ W.X.Y’.Z W’.X’.Y.Z’

• Maxterm
 An n-variable maxterm is a normal sum term with n literals.

 There are 2n such sum terms.

 Examples of 4-variable maxterms:

 W’ + X’ + Y + Z’ W + X’ + Y’ + Z W’ + X’ + Y + Z

• A minterm can be defined as as product term that is 1 in exactly
one row of the truth table.

• A maxterm can similarly be defined as a sum term that is 0 in
exactly one row in the truth table.

EECC341 - ShaabanEECC341 - Shaaban
#33 Midterm Review Winter 2001 1-22-2002

Minterms/Maxterms for
A 3-variable function F(X,Y,Z)

Row X Y Z F Minterm Maxterm

 0 0 0 0 F(0,0,0) X’.Y’.Z’ X + Y + Z
 1 0 0 1 F(0,0,1) X’.Y’.Z X + Y + Z’
 2 0 1 0 F(0,1,0) X’.Y.Z’ X + Y’ + Z
 3 0 1 1 F(0,1,1) X’.Y.Z X + Y’ + Z’
 4 1 0 0 F(1,0,0) X.Y’.Z’ X’ + Y + Z
 5 1 0 1 F(1,0,1) X.Y’.Z X’ + Y + Z’
 6 1 1 0 F(1,1,0) X.Y.Z’ X’ + Y’ + Z
 7 1 1 1 F(1,1,1) X.Y.Z X’ + Y’ + Z’

EECC341 - ShaabanEECC341 - Shaaban
#34 Midterm Review Winter 2001 1-22-2002

Minterms/Maxterms for
A 4-variable function F(W,X,Y,Z)

Row W X Y Z F Minterm Maxterm

 0 0 0 0 0 F(0,0,0,0) W’.X’.Y’.Z’ W + X + Y + Z
 1 0 0 0 1 F(0,0,0,1) W’. X’.Y’.Z W + X + Y + Z’
 2 0 0 1 0 F(0,0,1,0) W’. X’.Y.Z’ W + X + Y’ + Z
 3 0 0 1 1 F(0,0,1,1) W’. X’.Y.Z W + X + Y’ + Z’
 4 0 1 0 0 F(0,1,0,0) W’.X.Y’.Z’ W + X’ + Y + Z
 5 0 1 0 1 F(0,1,0,1) W’.X.Y’.Z W + X’ + Y + Z’
 6 0 1 1 0 F(0,1,1,0) W’.X.Y.Z’ W + X’ + Y’ + Z
 7 0 1 1 1 F(0,1,1,1) W’.X.Y.Z W+ X’ + Y’ + Z’
 8 1 0 0 0 F(1,0,0,0) W.X’.Y’.Z’ W’ + X + Y + Z
 9 1 0 0 1 F(1,0,0,1) W.X’.Y’.Z W’ + X + Y + Z’
 10 1 0 1 0 F(1,0,1,0) W.X’.Y.Z’ W’ + X + Y’ + Z
 11 1 0 1 1 F(1,0,1,1) W.X’.Y.Z W’ + X + Y’ + Z’
 12 1 1 0 0 F(1,1,0,0) W.X.Y’.Z’ W’ + X’ + Y + Z
 13 1 1 0 1 F(1,1,0,1) W.X.Y’.Z W’ + X’ + Y + Z’
 14 1 1 1 0 F(1,1,1,0) W.X.Y.Z’ W’ + X’ + Y’ + Z
 15 1 1 1 1 F(1,1,1,1) W.X.Y.Z W’+ X’ + Y’ + Z’

EECC341 - ShaabanEECC341 - Shaaban
#35 Midterm Review Winter 2001 1-22-2002

Canonical Sum RepresentationCanonical Sum Representation
• Minterm number:

 minterm i refers to the minterm corresponding to row i of
the truth table. For n-variables i is in the set

 {0,1, …, 2n-1}

• The canonical sum representation of a logic function is a
sum of the minterms corresponding to the truth table rows
for which the function produces a 1 output.

• A short-hand representation of the minterm list uses the ΣΣ
notation and minterm numbers to indicate the sum of
minterms of the function.

• This representation is usually realized using 2-level AND-OR
logic circuits with inverters at AND gates inputs as needed.

EECC341 - ShaabanEECC341 - Shaaban
#36 Midterm Review Winter 2001 1-22-2002

Canonical Sum Example
• The function represented by the truth table:

has the canonical sum representation:

 F = ΣΣ X,Y,Z (0, 3, 4, 6, 7)

 = X’.Y’.Z’ + X’.Y.Z + X.Y’.Z’ + X.Y’.Z’ + X.Y.Z

Row X Y Z F
 0 0 0 0 1
 1 0 0 1 0
 2 0 1 0 0
 3 0 1 1 1
 4 1 0 0 1
 5 1 0 1 0
 6 1 1 0 1
 7 1 1 1 1

Minterm list using Σ notation

Algebraic canonical sum of minterms

EECC341 - ShaabanEECC341 - Shaaban
#37 Midterm Review Winter 2001 1-22-2002

Canonical Product Representation
• Maxterm i refers to the maxterm corresponding to row i of

the truth table. For n-variables i is in the set

 {0,1, …, 2n-1}

• The canonical product representation of a logic function is the
product of the maxterms corresponding to the truth table
rows for which the function produces a 0 output.

• The product of such minterms is called a maxterm list

• A short-hand representation of the maxterm list uses the ΠΠ
notation and maxterm numbers to indicate the product of
maxterms of the function.

• This representation is usually realized using 2-level OR-AND
logic circuits with inverters at OR gates inputs as needed.

EECC341 - ShaabanEECC341 - Shaaban
#38 Midterm Review Winter 2001 1-22-2002

Canonical Product Example
• The function represented by the truth table:

has the canonical product representation:

F = ΠΠ X,Y,Z (1,2,5)

 = (X + Y + Z’) . (X + Y’ + Z) . (X’ + Y + Z’)

Row X Y Z F
 0 0 0 0 1
 1 0 0 1 0
 2 0 1 0 0
 3 0 1 1 1
 4 1 0 0 1
 5 1 0 1 0
 6 1 1 0 1
 7 1 1 1 1

Maxterm list using Π notation

Algebraic canonical product of maxterms

EECC341 - ShaabanEECC341 - Shaaban
#39 Midterm Review Winter 2001 1-22-2002

Conversion Between Conversion Between MintermMinterm//Maxterm Maxterm ListsLists

• To convert between a minterm list and a maxterm list

 take the set complement.

 Examples:

 ΣΣ X,Y,Z(0,1,2,3) = ΠΠ X,Y,Z(4,5,6,7)

 ΣΣ X,Y(1) = ΠΠ X,Y(0,2,3)

 ΣΣ W,X,Y,Z(0,1,2,3,5,7,11,13) = ΠΠ W,X,Y,Z(4,6,8,9,12,14,15)

EECC341 - ShaabanEECC341 - Shaaban
#40 Midterm Review Winter 2001 1-22-2002

•• Combinational Combinational Circuit Analysis:Circuit Analysis:
– Start with a logic diagram of the circuit.

– Proceed to a formal description of the function of the
circuit using truth tables or logic expressions.

•• CombinationalCombinational Circuit Synthesis: Circuit Synthesis:
– May start with an informal (possibly verbal) description

of the function performed.

– A formal description of the circuit function in terms of a
truth table or logic expression.

– The logic expression is manipulated using Boolean (or
switching) algebra and optimized to minimize the
number of gates needed, or to use specific type of gates.

– A logic diagram is generated based on the resulting
logic expression.

EECC341 - ShaabanEECC341 - Shaaban
#41 Midterm Review Winter 2001 1-22-2002

Combinational Circuit Analysis ExampleCombinational Circuit Analysis Example
Given this logic circuit we can :

• Find corresponding logic expression from circuit
• Create truth table by applying all input combinations:

• From truth table find Canonical Sum/Product Representations
• Manipulate logic expression to other forms using theorems.

00001111X

Y

Z

00110011

01010101

Y’

11001100

00001111
11001111
X+Y’

01000101
(X+Y’) . Z

01010101

X’ 11110000

Z

00110011Y

10101010Z’

00100000
X’. Y. Z’

01100101

F

corresponding logic expression: F = ((X + Y’) . Z) + (X’.Y. Z’)

Row X Y Z F
 0 0 0 0 0
 1 0 0 1 1
 2 0 1 0 1
 3 0 1 1 0
 4 1 0 0 0
 5 1 0 1 1
 6 1 1 0 0
 7 1 1 1 1

Truth Table

From truth table:
Canonical Sum
F = ΣΣ X,Y,Z (1, 2, 5,7)

Canonical Product
F = ΠΠ X,Y,Z (0,3,4,6)

EECC341 - ShaabanEECC341 - Shaaban
#42 Midterm Review Winter 2001 1-22-2002

Combinational Circuit Analysis ExampleCombinational Circuit Analysis Example
(continued)(continued)

• The previous circuit logic expression F can be transformed into sum
of products by multiplying out (Using T8’) and written as :

 F = X . Z + Y’. Z + X’.Y. Z’

 Realized using a 2-level AND-OR circuit:

F = X . Z + Y’. Z + X’.Y. Z’

X

Y

Z

Y’
Y’ . Z

X . Z

X’

X’ . Y . Z’
Z’

EECC341 - ShaabanEECC341 - Shaaban
#43 Midterm Review Winter 2001 1-22-2002

Equivalent Symbols of NAND, NOR GatesEquivalent Symbols of NAND, NOR Gates

X

Y
(X . Y)’

X

Y
X’ + Y’

X

Y
(X + Y)’

X

Y
X’ . Y’

NAND Symbols

NOR Symbols

According to DeMorgan’s theorem T13: (X . Y)’ = X’ + Y’

Normal Symbol

Normal NOR Symbol

According to DeMorgan’s theorem T13’: (X + Y)’ = X’ . Y’

Alternate NOR Symbol

Alternate NAND Symbol

EECC341 - ShaabanEECC341 - Shaaban
#44 Midterm Review Winter 2001 1-22-2002

• A sum of products logic expression can be realized by
NAND gates by replacing all AND gates and the OR GATE
in the usual realization with NAND gates as follows:

 F = A + B + C + D ...

 where A, B, C, …. are product terms of the

 input variables e.g. A= x.y.z

 F = (A’)’+(B’)’+(C’)’+(D’)’ + …. from T4

 = (A’.B’.C’.D’…)’ (from DeMorgan’s theorem T13)

 This is a 2-level NAND representation.

NAND-NAND Logic Circuits for Sum of ProductsNAND-NAND Logic Circuits for Sum of Products

EECC341 - ShaabanEECC341 - Shaaban
#45 Midterm Review Winter 2001 1-22-2002

Alternate Sum of Products RealizationsAlternate Sum of Products Realizations
 (Applying(Applying DeMorgan’s theorem T13 Graphically)

AND-OR

NAND-NAND

EECC341 - ShaabanEECC341 - Shaaban
#46 Midterm Review Winter 2001 1-22-2002

NAND-NAND Sum of Products ExampleNAND-NAND Sum of Products Example
• The sum of products expression

 F = X . Z + Y’. Z + X’.Y. Z’

 F = ((X . Z)’)’ + ((Y’. Z)’)’ + ((X’.Y. Z’)’)’ double negate T4

 F = [(X . Z)’ . (Y’. Z)’ . (X’.Y. Z’)’]’ DeMorgan’s theorem T13

 Can be realized using the 2-level NAND-NAND circuit:

F = [(X . Z)’ + (Y’. Z)’ + (X’.Y. Z’)’]’

X

Y

Z

Y’
 (Y’ . Z)’

 (X . Z)’

X’

(X’ . Y . Z’)’
Z’

EECC341 - ShaabanEECC341 - Shaaban
#47 Midterm Review Winter 2001 1-22-2002

NOR-NOR Circuits for Product of Sums

• A product of sums expression can be realized by NOR
gates by replacing all the OR gates and the AND gate
with NOR gates as follows:

 F = A.B.C.D. ….

 Where A, B, C are sum terms of the input

 variables (e.g. A = x+y+z)

 F = (A’)’.(B’)’.(C’)’.(D’)’ …. using T4

 = (A’ + B’ + C’ + D’ + …)’

 (using Demorgan’s theorem T13’)

 This is a 2-level NOR-NOR representation

EECC341 - ShaabanEECC341 - Shaaban
#48 Midterm Review Winter 2001 1-22-2002

Alternate Product of Sums RealizationsAlternate Product of Sums Realizations
 (Applying (Applying DeMorgan’s theorem T13’ Graphically)

OR-AND

NOR-NOR

EECC341 - ShaabanEECC341 - Shaaban
#49 Midterm Review Winter 2001 1-22-2002

Combinational Circuit Synthesis

• An example of a combinational circuit description:

 Create a logic function in 4 input variables N=N3N2N1N0

 whose output is 1 only if the input is a prime number.

• This function is 1 when the input N =1,2,3,5,7,11 can be
written in the canonical sum of products representation
as:

 F = Σ Σ N3N2N1N0
 (1,2,3,5,7,11,13) (1,2,3,5,7,11,13)

 = = N3’N2’N1’N0+ N3’N2’N1N0’+ N3’N2’N1N0

 +N3’N2N1’N +N3’N2N1N0+ N3N2’N1N0+ N3N2N1’N0

EECC341 - ShaabanEECC341 - Shaaban
#50 Midterm Review Winter 2001 1-22-2002

A Verbal Synthesis Example:
An Alarm Circuit

• A verbal logic description:
– The ALARM output is 1 if the panic input is 1, or if the ENABLE

input is 1, the EXISTING input is 0, and the house is not secure.

– The house is secure if the WINDOW, DOOR, GARAGE inputs are all 1

• This can be put in logic expressions as follows:

ALARM = PANIC + ENABLE . EXISTING’ . SECURE’

SECURE = WINDOW. DOOR. GARAGE

ALARM = PANIC + ENABLE . EXISTING’. (WINDOW . DOOR . GARAGE)’

In sum of products form as (by using DeMorgan T13 and multiplying out) :
ALARM = PANIC + ENABLE. EXISTING’ . WINDOW’

 + ENABLE . EXISTING’. DOOR’+ ENABLE. EXISTING’. GARAGE’

EECC341 - ShaabanEECC341 - Shaaban
#51 Midterm Review Winter 2001 1-22-2002

Combinational Circuit Minimization
• Canonical sum and product logic expressions do not provide a

circuit realization with the minimum number of gates.

• Minimization methods reduce the cost of two level AND-OR,
NAND-NAND, OR-AND, NOR-NOR circuits in three ways:

1 By minimizing the number of first level gates

2 By minimizing the number of inputs of each first-level gate.

3 Minimizing the inputs of the second level gate

• Most minimization methods are based on the combining theorems
T10, T10’:

 given product term.Y + given product term.Y’ = given product term

 (given sum term+Y).(given sum term + Y’) = given sum term

EECC341 - ShaabanEECC341 - Shaaban
#52 Midterm Review Winter 2001 1-22-2002

KarnaughKarnaugh Maps Maps
• A Karnaugh Map or (K-map for short) is a graphical

representation of the truth table of a logic function.

• The K-map for an n-input logic function is an array with 2n cells or
squares, one for each input combination or minterm.

• The rows and columns are labeled so that the input combination for
any cell is determined from the row and column headings.

• The row and columns of the map are ordered in such a way that
each cell differs from an adjacent cell in only one input variable:

– Thus for an n-variable K-map, each cell has n adjacent cells.

• The K-map for a function is filled by putting:

– a ‘1’ in the square corresponding to a minterm

– a ‘0’ otherwise (maybe omitted)

EECC341 - ShaabanEECC341 - Shaaban
#53 Midterm Review Winter 2001 1-22-2002

2-Variable K-map2-Variable K-map
For a 2-variable logic function F(X,Y):

Row X Y F Minterm
 0 0 0 F(0,0) X’.Y’
 1 0 1 F(0,1) X’.Y
 2 1 0 F(1,0) X.Y’
 3 1 1 F(1,1) X .Y

Truth Table: K-map

Y
X

0 1

0

1

X

Y

0 2

1 3

Example: For the function F(X,Y) = ΣΣ X,Y (1,2,3)

Row X Y F
 0 0 0 0
 1 0 1 1
 2 1 0 1
 3 1 1 1

Truth Table: K-map

Y
X

0 1

0

1

X

Y

0 2

1 3

1

11

EECC341 - ShaabanEECC341 - Shaaban
#54 Midterm Review Winter 2001 1-22-2002

3-Variable K-map

Z

X

0

1

00 01 11 10

Y

Z

XY

0

1

2

3

6

7

4

5

For a 3-variable logic function F(X,Y,Z):

Truth Table:
K-mapRow X Y Z F Minterm

 0 0 0 0 F(0,0,0) X’.Y’.Z’
 1 0 0 1 F(0,0,1) X’.Y’.Z
 2 0 1 0 F(0,1,0) X’.Y.Z’
 3 0 1 1 F(0,1,1) X’.Y.Z
 4 1 0 0 F(1,0,0) X.Y’.Z’
 5 1 0 1 F(1,0,1) X.Y’.Z
 6 1 1 0 F(1,1,0) X.Y.Z’
 7 1 1 1 F(1,1,1) X.Y.Z

Example: For the function F(X,Y,Z) = ΣΣ X,Y,Z (1,2,5,7)

Truth Table:
K-map

Row X Y Z F
 0 0 0 0 0
 1 0 0 1 1
 2 0 1 0 1
 3 0 1 1 0
 4 1 0 0 0
 5 1 0 1 1
 6 1 1 0 0
 7 1 1 1 1

Z

X

0

1

00 01 11 10

Y

Z

XY

0

1

2

3

6

7

4

5
1

1

1 1

EECC341 - ShaabanEECC341 - Shaaban
#55 Midterm Review Winter 2001 1-22-2002

3-Variable K-map (continued)
• There is a horizontal adjacency wrap-around in the 3-variable K-map:

 For example:
– Cell 0 (minterm 0 = X’.Y’.Z’) is adjacent to:

• cell 4 (minterm 4, = X.Y’.Z’) by wrap-around.

• in addition to being adjacent to cells 1, 2 (minterm 1 = X’.Y’.Z
minterm 2, = X’.Y.Z’)

– Cell 1 (minterm 1, X’.Y’.Z) is adjacent to:
• cell 5 (minterm 5, X.Y’.Z) by wrap-around.

• in addition to being adjacent to cells 0 , 2 (minterm 0 = X’.Y’.Z’
minterm 3 = X’.Y.Z)

Z

X

0

1

00 01 11 10

Y

Z

XY

0

1

2

3

6

7

4

5

EECC341 - ShaabanEECC341 - Shaaban
#56 Midterm Review Winter 2001 1-22-2002

4-Variable K-map4-Variable K-map
For a 4-variable logic function F(W,X,Y,Z):

Y

W

00

01

11

10

00 01 11 10

X

YZ
WX

Z

0

1

3

2

4

5

7

6

12

13

15

14

8

9

11

10

Truth Table: K-map

Row W X Y Z F Minterm

 0 0 0 0 0 F(0,0,0,0) W’.X’.Y’.Z’
 1 0 0 0 1 F(0,0,0,1) W’. X’.Y’.Z
 2 0 0 1 0 F(0,0,1,0) W’. X’.Y.Z’
 3 0 0 1 1 F(0,0,1,1) W’. X’.Y.Z
 4 0 1 0 0 F(0,1,0,0) W’. X.Y’.Z’
 5 0 1 0 1 F(0,1,0,1) W’.X.Y’.Z
 6 0 1 1 0 F(0,1,1,0) W’.X.Y.Z’
 7 0 1 1 1 F(0,1,1,1) W’.X.Y.Z
 8 1 0 0 0 F(1,0,0,0) W.X’.Y’.Z’
 9 1 0 0 1 F(1,0,0,1) W.X’.Y’.Z
 10 1 0 1 0 F(1,0,1,0) W.X’.Y.Z’
 11 1 0 1 1 F(1,0,1,1) W.X’.Y.Z
 12 1 1 0 0 F(1,1,0,0) W.X.Y’.Z’
 13 1 1 0 1 F(1,1,0,1) W.X.Y’.Z
 14 1 1 1 0 F(1,1,1,0) W.X.Y.Z’
 15 1 1 1 1 F(1,1,1,1) W.X.Y.Z

EECC341 - ShaabanEECC341 - Shaaban
#57 Midterm Review Winter 2001 1-22-2002

4-Variable K-map (continued)
• There are 2 adjacency wrap-arounds in the 4-variable K-map :

a horizontal wrap-around and a vertical wrap-around.

• Every cell thus has 4 neighbours. For example, cell 0 corresponding
to minterm 0 is adjacent to: cells 1, 2, 4, 8

Y

W

00

01

11

10

00 01 11 10

X

YZ
WX

Z

0

1

3

2

4

5

7

6

12

13

15

14

8

9

11

10

EECC341 - ShaabanEECC341 - Shaaban
#58 Midterm Review Winter 2001 1-22-2002

4-Variable K-map Example

For the function F(W,X,Y,Z) = ΣΣ W,X,Y,Z (5,7,12,13,14,15)

Truth Table:

Row W X Y Z F

 0 0 0 0 0 0
 1 0 0 0 1 0
 2 0 0 1 0 0
 3 0 0 1 1 0
 4 0 1 0 0 0
 5 0 1 0 1 1
 6 0 1 1 0 0
 7 0 1 1 1 1
 8 1 0 0 0 0
 9 1 0 0 1 0
 10 1 0 1 0 0
 11 1 0 1 1 0
 12 1 1 0 0 1
 13 1 1 0 1 1
 14 1 1 1 0 1
 15 1 1 1 1 1

Y

W

00

01

11

10

00 01 11 10

X

YZ
WX

Z

0

1

3

2

4

5

7

6

12

13

15

14

8

9

11

10

1

1 1

1 1

1

K-map

EECC341 - ShaabanEECC341 - Shaaban
#59 Midterm Review Winter 2001 1-22-2002

Minimizing Sum of Products using K-maps

• Each input combination with “1” in a Karnaugh map or
truth table correspond to a minterm in the function’s
canonical sum representation.

• Pairs of adjacent “1” cells in the Karnaugh map indicate
minterms that differ in only one variable.

• Using the generalization of T10, such adjacent minterm
pairs can be combined into a single product term.

• In general, one can simplify a logic function by combining
pairs of adjacent 1-cell minterms and writing a sum of
products expression to cover all of the 1-cells.

EECC341 - ShaabanEECC341 - Shaaban
#60 Midterm Review Winter 2001 1-22-2002

K-Map Minimization Rules and Definitions
• A minimal sum of a logic function F(X1, X2, ..Xn) is a sum-of-

products expression for F such that no other similar expression
for F has fewer product terms, and other expressions with the
same number of product terms have at least the same number
of literals.

• A set of 2i 1-cells are combined into a single square or
rectangle if i variables take all 2i possible combinations within
the set while the remaining variables have the same value.

• The corresponding product term for the combined cells has n-i
literals.

• Only the variables that have the same value appear in the
resulting product term:

– A variable in the resulting product term is complemented if
it appears as 0 in all the 1-cells, and uncomplemented if it
appears as 1.

EECC341 - ShaabanEECC341 - Shaaban
#61 Midterm Review Winter 2001 1-22-2002

Sum of Products Minimization Using K-maps

• Group or combine as many adjacent 1-cells as possible:

– The larger the group is, the fewer the number of literals in the
resulting product term.

– Each group of combined adjacent 1-cells must have a number of
cells equal to powers of two: 1, 2, 4, 8, …

– Grouping 2 adjacent 1-cells eliminates 1 variable, grouping 4 1-
cells eliminates 2 variables, grouping 8 1-cells eliminates 3
variables, and so on. In general, grouping 2n squares eliminates
n variables.

• Select as few groups as possible to cover all the 1-cells
(minterms) of the function:

– The fewer the groups, the fewer the number of product terms in
the minimized function.

EECC341 - ShaabanEECC341 - Shaaban
#62 Midterm Review Winter 2001 1-22-2002

3-Variable K-map Minimization Example
• Using K-map, find a minimal sum of products (SOP) expression

expression for the function:

 F(X,Y,Z) = ΣΣ X,Y,Z (1,2,5,7)

Truth Table

Row X Y Z F
 0 0 0 0 0
 1 0 0 1 1
 2 0 1 0 1
 3 0 1 1 0
 4 1 0 0 0
 5 1 0 1 1
 6 1 1 0 0
 7 1 1 1 1

K-map

Minimum SOP for F = X’. Y . Z’ + X . Z + Y’ . Z

Z

X

 00 01 11 10

Y

Z

XY

0

1

2

3

6

7

4

5

1

1

1 1

X . Z

X’. Y . Z’

Y’ . Z

0

 1

EECC341 - ShaabanEECC341 - Shaaban
#63 Midterm Review Winter 2001 1-22-2002

3-Variable K-map Minimization Example
• Using K-map, find a minimal sum of products (SOP) expression

expression for the function:

 F(X,Y,Z) = ΣΣ X,Y,Z (0,1,4,5, 6)

Truth Table

Row X Y Z F
 0 0 0 0 1
 1 0 0 1 1
 2 0 1 0 0
 3 0 1 1 0
 4 1 0 0 1
 5 1 0 1 1
 6 1 1 0 1
 7 1 1 1 0

K-map

Z

X

0

 1

 00 01 11 10

Y

Z

XY

0

1

2

3

6

7

4

5

1

11

1

1

Minimum SOP for F = Y’ + X . Z’

Y’

X . Z’

EECC341 - ShaabanEECC341 - Shaaban
#64 Midterm Review Winter 2001 1-22-2002

4-Variable K-map Minimization Example
• Using K-map, find a minimal sum of products (SOP) expression

expression for the function:

 F(N3,N2,N1,N0) = ΣΣ N3,N2,N1,N0 (1,2,3,5,7,11,13)

Truth Table:
Row W X Y Z F

 0 0 0 0 0 0
 1 0 0 0 1 1
 2 0 0 1 0 1
 3 0 0 1 1 1
 4 0 1 0 0 0
 5 0 1 0 1 1
 6 0 1 1 0 0
 7 0 1 1 1 1
 8 1 0 0 0 0
 9 1 0 0 1 0
 10 1 0 1 0 0
 11 1 0 1 1 1
 12 1 1 0 0 0
 13 1 1 0 1 1
 14 1 1 1 0 0
 15 1 1 1 1 0

N1

N3

00

01

11

10

00 01 11 10

N2

N1 N0

N3 N2

N0

0

1

3

2

4

5

7

6

12

13

15

14

8

9

11

10

K-map

1 1

1 1

1

1

1

N3’.N2’.N1

N2 . N1’. N0
N3’. N0

N2’ . N1 . N0

Minimum SOP for F = N3’. N0 + N3’. N2’ . N1 + N2’. N1 . N0 + N2 . N1’.N0

EECC341 - ShaabanEECC341 - Shaaban
#65 Midterm Review Winter 2001 1-22-2002

K-Map Minimization Rules and Definitions

• A logic function P(X1, X2, ..Xn) implies a logic function F(X1, …, Xn)
if for every input combination such that P=1, then F=1 (F includes
P , or F covers P).

• A prime implicant of a logic function F(X1, ..Xn) is a normal product
term P(X1, ..Xn) that implies F, such that if any variable is removed
from P, the the resulting product term does not imply F.

• A minimal sum is a sum of prime implicants (not necessarily all of
them).

• A distinguished 1-cell of a logic function is an input combination that
is covered by only one prime implicant.

• An essential prime implicant of a logic function is a prime implicant
that covers one or more distinguished 1-cells and must be included
every minimal sum expression for the function.

EECC341 - ShaabanEECC341 - Shaaban
#66 Midterm Review Winter 2001 1-22-2002

4-Variable K-map Minimization Example
• Using K-map, find a minimal sum of products (SOP) expression expression for the

function: F(W,X,Y,Z) = ΣΣ W,X,Y,Z (2,3,4,5,6,7,11,13,15)

• Also identify all prime implicants, distinguished 1-cells and the corresponding
essential prime implicants that cover them.

K-map

Y

W

00

01

11

10

00 01 11 10

X

YZ

WX

Z

0

1

3

2

4

5

7

6

12

13

15

14

8

9

11

10

1

1

1 1

11

1

1

1

W’.X

Y . Z

X . Z

W’ . Y

From K-map:

Prime Implicants:

W’. Y W’ . X Y . Z X . Z

Distinguished 1-cells:

Cell 2 covered by W’ . Y
Cell 4 covered by W’ . X
Cell 11 covered by Y . Z
Cell 13 covered by X . Z

Here all prime implicants are
essential prime implicants and
all of them must be included in
minimum SOP expression:

F = W’ . Y + W’. X + Y . Z + X . Z

EECC341 - ShaabanEECC341 - Shaaban
#67 Midterm Review Winter 2001 1-22-2002

Minimization with Don’t care Input Combinations

• In some cases, the output of a combinational circuit
doesn’t matter for certain input combinations.

• Such combinations are called don’t cares and the output
is represented in the truth table and K-maps as “d”.

• When using K-maps to minimize such functions:

– Allow d’s to be included when circling sets of 1’s to
make the sets as large as possible.

– Do not circle any set that only contains d’s.

EECC341 - ShaabanEECC341 - Shaaban
#68 Midterm Review Winter 2001 1-22-2002

• Using K-map, find a minimal sum of products (SOP) expression for prime BCD-
digit detector which gives 1 when the input BCD digit is prime,

• Since the values 10-15 do not occur in a BCD digit minterms 10-15 are treated as
don’t cares giving the expression:

 F(N3,N2,N1,N0) = ΣΣ N3,N2,N1,N0 (1,2,3,5,7) + d(10,11,12,13,14,15)

4-Variable K-map Minimization Example With Don’t cares4-Variable K-map Minimization Example With Don’t cares

N1

N3

00

01

11

10

00 01 11 10

N2

N1 N0

N3 N2

N0

0

1

3

2

4

5

7

6

12

13

15

14

8

9

11

10

1 1

1 1

d

1

d

d

d

d

d

From K-map:

Prime Implicants:

 N3’. N0 N2’. N1 N2 . N0

Distinguished 1-cells:

Cell 1 covered by N3’. N0
Cell 2 covered by N2’. N1

Here not all prime implicants are
essential prime implicants that
must be included minimum
SOP expression:

F = N3’ . N0 + N2’ . N1

N2 . N0

N2’. N1

N3’. N0

EECC341 - ShaabanEECC341 - Shaaban
#69 Midterm Review Winter 2001 1-22-2002

K-map Minimization of Product of Sums
• Similar to K-map minimization of sum of products by

using duality and looking at 0-cells instead of 1-cells.

• A set of 2i 0-cells may be combined if i variables take all 2i

possible combinations within the set while the remaining
variables have the same value.

• In the resulting n-i literals sum term, a variable is
complemented if it appears as 1 in all the 0-cells, and
uncomplemented if it appears as 0.

• A prime implicate of a logic function F(X1, ..Xn), is a normal

sum term S(X1, ..Xn) implied by F, such as if any variable is
removed from S, then the resulting sum term is not
implied by F.

• A minimal product is a product of prime implicates.

EECC341 - ShaabanEECC341 - Shaaban
#70 Midterm Review Winter 2001 1-22-2002

K-map Product of Sums Minimization Example 1

• Using K-map, find a minimal product of sums (POS) expression
expression for the function:

 F(X,Y,Z) = ΠΠ X,Y,Z (0,3,4,7)

Truth Table

Row X Y Z F
 0 0 0 0 0
 1 0 0 1 1
 2 0 1 0 1
 3 0 1 1 0
 4 1 0 0 0
 5 1 0 1 1
 6 1 1 0 1
 7 1 1 1 0

K-map

Z

X

0

 1

 00 01 11 10

Y

Z

XY

0

1

2

3

6

7

4

5

0

0

0

0

(Y + Z)

(Y’ + Z’)

Minimum POS for F = (Y + Z) . (Y’ + Z’)

EECC341 - ShaabanEECC341 - Shaaban
#71 Midterm Review Winter 2001 1-22-2002

K-map Product of Sums Minimization Example 2
• Using K-map, find a minimal product of sums (POS) expression

expression for the function:

 F(W,X,Y,Z) = ΠΠ W,X,Y,Z (1,3,8,10,12,13,14,15)

K-map

W

Y

00

01

11

10

00 01 11 10

X

YZ

WX

Z

0

1

3

2

4

5

7

6

12

13

15

14

8

9

11

10

0 0

0

0

0 0

0

0

(W + X + Z’)

(W’ + X’)

(W’ + Z)

Minimum POS for F = (W + X + Z’) . (W’ + Z) . (W’ + X’)

EECC341 - ShaabanEECC341 - Shaaban
#72 Midterm Review Winter 2001 1-22-2002

5-variable K-maps
• The K-map for a 5-variable logic function F(V,W,X,Y,Z) is

organized as two 4-variable K-maps:

Y

W

00

01

11

10

00 01 11 10

X

YZ
WX

Z

16

17

19

18

20

21

23

22

28

29

31

30

24

25

27

26
Y

W

00

01

11

10

00 01 11 10

X

YZ
WX

Z

0

1

3

2

4

5

7

6

12

13

15

14

8

9

11

10

V = 0 V = 1

Corresponding squares of each map are adjacent.
Can be visualised as being one 4-variable map on
 top of another 4-variable map.

EECC341 - ShaabanEECC341 - Shaaban
#73 Midterm Review Winter 2001 1-22-2002

5-Variable K-map SOP Minimization Example
• Using K-map, find a minimal sum of products (SOP) expression

expression for the function:

 F(V,W,X,Y,Z) = ΣΣ V,W,X,Y,Z (4,5,6,7,9,11,13,15,25,27,29,31)

Y

W

00

01

11

10

00 01 11 10

X

YZ
WX

Z

16

17

19

18

20

21

23

22

28

29

31

30

24

25

27

26
Y

W

00

01

11

10

00 01 11 10

X

YZ
WX

Z

0

1

3

2

4

5

7

6

12

13

15

14

8

9

11

10

V = 0 V = 1

1

1

1

1

1 1 1

1 11

1

1

K-map

V’ . W’. X W . Z

Minimum SOP for F = V’ . W’. X + W . Z

EECC341 - ShaabanEECC341 - Shaaban
#74 Midterm Review Winter 2001 1-22-2002

6-variable K-maps K-map for a 6-variable logic function F(U,V,W,X,Y,Z)

is organized as two 5-variable K-maps:

Y

W

00

01

11

10

00 01 11 10

X

YZ
WX

Z

16

17

19

18

20

21

23

22

28

29

31

30

24

25

27

26
Y

W

00

01

11

10

00 01 11 10

X

YZ
WX

Z

0

1

3

2

4

5

7

6

12

13

15

14

8

9

11

10

U,V = 0,0 U,V = 0,1

Y

W

00

01

11

10

00 01 11 10

X

YZ
WX

Z

48

49

51

50

52

53

55

54

60

61

63

62

56

57

59

58
Y

W

00

01

11

10

00 01 11 10

X

YZ
WX

Z

32

33

35

34

36

37

39

38

44

45

47

46

40

41

43

42

U,V = 1,0 U,V = 1,1

EECC341 - ShaabanEECC341 - Shaaban
#75 Midterm Review Winter 2001 1-22-2002

Combinational Logic Circuit Transient Vs. Steady-state Output
• Gate propagation delay: The time between an input change and the

corresponding change of the output.

• Circuit steady-state output: The output is evaluated when the inputs have
been stable for a long time relative to the gate delays.

• Circuit transient output behavior: The circuit output when one or more
inputs change values.

• Example: For an inverter with propagation delay, ∆∆ when input changes
from 1 to 0:

• The circuit analysis done so far ignores propagation delays and considers only
steady-state output when all propagation delays have completed though all the
circuit gates.

X X’

1

0

1

0

Time

X

X’

 ∆∆

 ((propagation delay)

Steady-state outputTransient
 output

1 → 0

Timing Diagram

EECC341 - ShaabanEECC341 - Shaaban
#76 Midterm Review Winter 2001 1-22-2002

• Output glitch: A momentary unexpected transient output change (short
pulse) when an input changes and usually caused by gate propagation
delays.

• Hazards: A hazard exists in a combinational circuit when it produces an
output glitch when one or more inputs change.

• Types of combinational logic hazards:

• Static Hazards:
– Static-1 Hazard: The output should be 1 but goes momentary to 0 as a result of

an input change. (possible in AND-OR circuits)

– Static-0 Hazard: The output should be 0 but goes momentary to 1 as a result of
an input change. (possible in OR-AND circuits)

• Dynamic Hazards: The output changes more than once as a result of a
single input change (impossible in 2-level circuits).

• Static hazards can be detected and eliminated for 2-level logic circuits
using K-maps.

Combinational Logic Hazards

11

0

1

0 0

Static-1 HazardStatic-0 Hazard

1

0 0

Dynamic Hazard Example

1

EECC341 - ShaabanEECC341 - Shaaban
#77 Midterm Review Winter 2001 1-22-2002

Example: Circuit with Static-1 Hazard
• A static-1 hazard exists in the following AND-OR circuit when X = 1, Y = 1

and Z changes from 1 to 0 (assume all gates have propagation delay ∆∆):

X

Z

Y

Z’
X . Z’

Y . Z

F
1 → 0

1

1

0 → 1

1 → 0

Timing Diagram

1
0

1
0

Time

Z

Z’
∆∆

∆∆
Y. Z’

1
0

1
0

Y. Z

∆∆1
0

F

Steady-state
output

Circuit

K-map

Z

X

0

1

00 01 11 10

Y

Z

XY

0

1

2

3

6

7

4

5

1 1

1 1

Y . Z

X . Z’

1 → 0 → 1

F = X . Z’ + Y . Z

EECC341 - ShaabanEECC341 - Shaaban
#78 Midterm Review Winter 2001 1-22-2002

Eliminating Static-1 Hazards Using K-maps
• A static-1 hazard occurs in AND-OR circuits when an input variable

and its complement are connected to two different AND gates.

• Static-1 hazards are found using k-maps by finding adjacent 1 cells that
are covered by different product terms.

• To eliminate static-1 hazards, additional product terms (prime
implicants) are needed to cover such cells thus covering the transition of
the variable causing the hazard.

• For in the previous example the static-1 hazard is eliminated by
including the additional product term X . Y

Z

X

0

1

00 01 11 10

Y

Z

XY

0

1

2

3

6

7

4

5

1 1

1 1

X. Y

X . Z’

Y . Z

New F = X . Z’ + Y . Z + X. Y

X

Z

Y

Z’
X . Z’

Y . Z

FX . Y

Circuit with static-1 hazard eliminated

EECC341 - ShaabanEECC341 - Shaaban
#79 Midterm Review Winter 2001 1-22-2002

Eliminating Static-0 Hazards Using K-maps

• A static-0 hazard occurs in OR-AND circuits when an input variable
and its complement are connected to two different OR gates.

• The procedure to find and eliminate static-0 hazards using K-maps is
done in a dual way to finding static-1 hazards.

• Static-0 hazards are found using k-maps by finding adjacent 0 cells that
are covered by different sum terms.

• To eliminate static-0 hazards, additional sum terms (prime implicates)
are needed to cover such cells thus covering the transition of the
variable causing the hazard.

