
EECC550 - ShaabanEECC550 - Shaaban
#1 Lec # 6 Spring 2003 4-2-2003

• Control may be designed using one of several initial representations. The
choice of sequence control, and how logic is represented, can then be
determined independently; the control can then be implemented with one
of several methods using a structured logic technique.

Initial Representation Finite State Diagram Microprogram

Sequencing Control Explicit Next State Microprogram counter
 Function + Dispatch ROMs

Logic Representation Logic Equations Truth Tables

Implementation PLA ROM
Technique “hardwired control” “microprogrammed control”

Control Implementation AlternativesControl Implementation Alternatives

Chapter 5.5, 5.6

EECC550 - ShaabanEECC550 - Shaaban
#2 Lec # 6 Spring 2003 4-2-2003

AlternativeAlternative datapath datapath (Textbook): (Textbook):
Multiple CycleMultiple Cycle Datapath Datapath

Ideal
Memory
WrAdr
Din

RAdr

32

32

32
Dout

MemWr
32

A
L

U

32
32

ALUOp

ALU
Control

32

IRWr

In
stru

ction
 R

eg

32

Reg File

Ra

Rw

busW

Rb
5

5

32
busA

32busB

RegWr

Rs

Rt

M
u

x

0

1

Rt

Rd

PCWr

ALUSelA

Mux 01

RegDst

M
u

x

0

1

32

PC

MemtoReg

Extend

ExtOp

M
u

x

0

1
32

0

1

2
3

4

16Imm 32

<< 2

ALUSelB

M
u

x
1

0

32

Zero

Zero
PCWrCond PCSrc

32

IorD

M
em

 D
ata R

eg

A
L

U
 O

u
t

B

A

EECC550 - ShaabanEECC550 - Shaaban
#3 Lec # 6 Spring 2003 4-2-2003

Operations In Each CycleOperations In Each Cycle

Instruction
Fetch

Instruction
Decode

Execution

Memory

Write
Back

 R-Type

IR ← ← Mem[PC]
PC ←← PC + 4

A ←← R[rs]

B ← ← R[rt]

ALUout ←← PC +
(SignExt(imm16)
x4)

ALUout ←← A + B

R[rd] ← ← ALUout

 Logic
 Immediate

IR ←← Mem[PC]
PC ←← PC + 4

 A ←← R[rs]

 B ← ← R[rt]

ALUout ←← PC +

 (SignExt(imm16) x4)

ALUout ← ←

 A OR ZeroExt[imm16]

 R[rt] ← ← ALUout

 Load

IR ←← Mem[PC]
PC ←← PC + 4

 A ←← R[rs]

 B ← ← R[rt]

ALUout ←← PC +

 (SignExt(imm16) x4)

ALUout ← ←

 A + SignEx(Im16)

M ← ← Mem[ALUout]

 R[rt] ← ← Mem

 Store

IR ← ← Mem[PC]
PC ←← PC + 4

 A ←← R[rs]

 B ← ← R[rt]

ALUout ←← PC +

 (SignExt(imm16) x4)

ALUout ←←

 A + SignEx(Im16)

Mem[ALUout] ←← B

 Branch

IR ←← Mem[PC]
PC ←← PC + 4

 A ←← R[rs]

 B ← ← R[rt]

ALUout ←← PC +

 (SignExt(imm16) x4)

If Equal = 1

 PC ← ← ALUout

EECC550 - ShaabanEECC550 - Shaaban
#4 Lec # 6 Spring 2003 4-2-2003

 Finite State Machine (FSM) Specification Finite State Machine (FSM) Specification
IR ← MEM[PC]
PC ← PC + 4

R-type

ALUout
 ← A fun B

R[rd]
 ← ALUout

ALUout
 ← A op ZX

R[rt]
 ← ALUout

ORi
ALUout

 ← A + SX

R[rt] ← M

M ←
MEM[ALUout]

LW

ALUout
 ← A + SX

MEM[ALUout]
 ← B

SW

“instruction fetch”

“decode”

E
xe

cu
te

M
em

or
y

W
rit

e-
ba

ck

0000

0001

0100

0101

0110

0111

1000

1001

1010

1011

1100

BEQ

0010

If A = B then
PC ← ALUout

A ← R[rs]
B ← R[rt]

ALUout
 ← ← PC +SX

To instruction fetch

To instruction fetch
To instruction fetch

EECC550 - ShaabanEECC550 - Shaaban
#5 Lec # 6 Spring 2003 4-2-2003

MicroprogrammedMicroprogrammed Control Control
• Finite state machine control for a full set of instructions is very

complex, and may involve a very large number of states:
– Slight microoperation changes require new FSM controller.

• Microprogramming: Designing the control as a program that
implements the machine instructions.

• A microprogam for a given machine instruction is a symbolic
representation of the control involved in executing the instruction
and is comprised of a sequence of microinstructions.

•

• Each microinstruction defines the set of datapath control signals
that must asserted (active) in a given state or cycle.

• The format of the microinstructions is defined by a number of
fields each responsible for asserting a set of control signals.

• Microarchitecture:
– Logical structure and functional capabilities of the hardware as

seen by the microprogrammer.

EECC550 - ShaabanEECC550 - Shaaban
#6 Lec # 6 Spring 2003 4-2-2003

A TypicalA Typical Microcode Microcode Controller Implementation Controller Implementation

ROM/
PLA

EECC550 - ShaabanEECC550 - Shaaban
#7 Lec # 6 Spring 2003 4-2-2003

““MacroinstructionMacroinstruction” Interpretation” Interpretation

Main
Memory

execution
unit

control
memory

CPU

ADD
SUB
AND

DATA

.

.

.

User program
plus Data

AND microsequence

e.g., Fetch
 Calc Operand Addr
 Fetch Operand(s)
 Calculate
 Save Answer(s)

one of these is
mapped into one
of these

Microprogram
 Storage

EECC550 - ShaabanEECC550 - Shaaban
#8 Lec # 6 Spring 2003 4-2-2003

Variations on Variations on Microprogram Microprogram FormatsFormats
• “Horizontal” Microcode:

– A control field for each control point in the machine.

• “Vertical” Microcode:

– A Compact microinstruction format for each class of control
points.

– Local decode is used to generate all control points.

µseq µaddr A-mux B-mux bus enables register enables

Horizontal
Vertical

EECC550 - ShaabanEECC550 - Shaaban
#9 Lec # 6 Spring 2003 4-2-2003

More Vertical More Vertical MicroprogramMicroprogram Formats Formats

src dst

D
E
C

D
E
C

other control fields next states inputs

MUX

Multiformat Microcode:

1 3 6

1 3 3 3

0 cond next address

1 dst src alu

D
E
C

D
E
C

Branch Jump

Register Transfer Operation

EECC550 - ShaabanEECC550 - Shaaban
#10 Lec # 6 Spring 2003 4-2-2003

MicroinstructionMicroinstruction Format/Addressing Format/Addressing
• Start with list of all control signals.

• Partition control signals with similar functions into a number of signal
sets that share a single microinstruction field.

• A sequencing microinstruction field is used to indicate the next
microinstruction to execute.

• Places fields in some logical order (e.g., ALU operation & ALU
operands first and microinstruction sequencing last).

• Since microinstructions are placed in a ROM or PLA, addresses must
be assigned to microinstructions, usually sequentially.

• Create a symbolic legend for the microinstruction format, showing
name of field values and how they set the control signals.

• To minimize microinstruction width, operations that will never be
used at the same time may be encoded.

EECC550 - ShaabanEECC550 - Shaaban
#11 Lec # 6 Spring 2003 4-2-2003

NextNext Microinstruction Microinstruction Selection Selection
• The next microinstruction to execute can be found by

using the sequencing field:
– Branch to a microinstruction that begins execution of the next

MIPS instruction. “Fetch” is placed in the sequencing field.

– Increment the address of the current instruction. Indicated
in the microinstruction by putting “Seq” in the sequencing
field.

– Choose the next microinstruction based on the control unit
input (a dispatch).

• Dispatches are implemented by a look-up table stored in a
ROM containing addresses of target microinstruction.

• The table is indexed by the control unit input.

• A dispatch operation is indicated by placing “Dispatch i” in
the sequencing field; i is the dispatch table number.

EECC550 - ShaabanEECC550 - Shaaban
#12 Lec # 6 Spring 2003 4-2-2003

Types of “branching”
• Set state to 0 (fetch)
• Dispatch i (state 1)
• Use incremented
 address (seq) state
 number 2

Opcode

State Reg

 Microinstruction Address

 Inputs

Outputs
 Control
 Signal
 Fields

Microprogram
 Storage

 ROM/PLA

Multicycle
Datapath

1

Address Select Logic

Adder

Microprogram
Counter, MicroPC

Sequencing
Control
Field

Microprogrammed Microprogrammed Control UnitControl Unit

EECC550 - ShaabanEECC550 - Shaaban
#13 Lec # 6 Spring 2003 4-2-2003

Next State Function: Sequencing FieldNext State Function: Sequencing Field
• For next state function (next microinstruction address):
Signal Name Value Effect
Sequencing Fetch 00 Next µaddress = 0
 Dispatch i 01 Next µaddress = dispatch ROM

Seq 10 Next µaddress = µaddress + 1

Opcode

microPC

1

µAddress
Select
Logic

Adder

ROM

Mux

0
012

Microprogram
 Storage

Dispatch
ROM

EECC550 - ShaabanEECC550 - Shaaban
#14 Lec # 6 Spring 2003 4-2-2003

List of control Signals Grouped Into FieldsList of control Signals Grouped Into Fields
Signal name Effect when deasserted Effect when asserted

ALUSelA 1st ALU operand = PC 1st ALU operand = Reg[rs]
RegWrite None Reg. is written
MemtoReg Reg. write data input = ALU Reg. write data input = memory
RegDst Reg. dest. no. = rt Reg. dest. no. = rd
MemRead None Memory at address is read,

MDR ←← Mem[addr]
MemWrite None Memory at address is written
IorD Memory address = PC Memory address = S
IRWrite None IR ←← Memory
PCWrite None PC ←← PCSource
PCWriteCond None IF ALUzero then PC ←← PCSource
PCSource PCSource = ALU PCSource = ALUout

Si
ng

le
 B

it
C

on
tr

ol

Signal name Value Effect
ALUOp 00 ALU adds
 01 ALU subtracts
 10 ALU does function code

11 ALU does logical OR
ALUSelB 000 2nd ALU input = Reg[rt]
 001 2nd ALU input = 4
 010 2nd ALU input = sign extended IR[15-0]
 011 2nd ALU input = sign extended, shift left 2 IR[15-0]

100 2nd ALU input = zero extended IR[15-0]

M
ul

tip
le

 B
it

C
on

tr
ol

EECC550 - ShaabanEECC550 - Shaaban
#15 Lec # 6 Spring 2003 4-2-2003

MicroinstructionMicroinstruction Format Format
Field Name Width Control Signals Set

wide narrow
ALU Control 4 2 ALUOp
SRC1 2 1 ALUSelA
SRC2 5 3 ALUSelB
Destination 3 2 RegWrite, MemtoReg, RegDst
Memory 4 3 MemRead, MemWrite, IorD
Memory Register 1 1 IRWrite
PCWrite Control 4 3 PCWrite, PCWriteCond, PCSource
Sequencing 3 2 AddrCtl

Total width 26 17 bits

EECC550 - ShaabanEECC550 - Shaaban
#16 Lec # 6 Spring 2003 4-2-2003

MicroinstructionMicroinstruction Field Values Field Values
Field Name Values for Field Function of Field with Specific Value
ALU Add ALU adds

Subt. ALU subtracts
Func code ALU does function code
Or ALU does logical OR

SRC1 PC 1st ALU input = PC
rs 1st ALU input = Reg[rs]

SRC2 4 2nd ALU input = 4
Extend 2nd ALU input = sign ext. IR[15-0]
Extend0 2nd ALU input = zero ext. IR[15-0]
Extshft 2nd ALU input = sign ex., sl IR[15-0]
rt 2nd ALU input = Reg[rt]

destination rd ALU Reg[rd] ←← ALUout
rt ALU Reg[rt] ←← ALUout

 rt Mem Reg[rt] ←← Mem
Memory Read PC Read memory using PC

Read ALU Read memory using ALU output
Write ALU Write memory using ALU output, value B

Memory register IR IR ←← Mem
PC write ALU PC ←← ALU

ALUoutCond IF ALU Zero then PC ←← ALUout
Sequencing Seq Go to sequential micoinstruction

Fetch Go to the first microinstruction
Dispatch i Dispatch using ROM.

EECC550 - ShaabanEECC550 - Shaaban
#17 Lec # 6 Spring 2003 4-2-2003

Instruction Fetch/decode Instruction Fetch/decode MicrocodeMicrocode Sequence Sequence
Label ALU SRC1 SRC2 Dest. Memory Mem. Reg. PC Write Sequencing

Fetch: Add PC 4 Read PC IR ALU Seq
Add PC Extshft Dispatch

First microinstruction: Fetch, increment PC

Field Name Value for Field Function of Field

ALU Add ALU adds
SRC1 PC 1st ALU input = PC
SRC2 4 2nd ALU input = 4
Memory Read PC Read memory using PC
Memory register IR IR ←← Mem
PC write ALU PC ←← ALU
Sequencing Seq Go to sequential µinstruction

Second microinstruction: Decode, calculate branch address

Field Name Value for Field Function of Field

ALU Add ALU adds result in ALUout
SRC1 PC 1st ALU input = PC
SRC2 Extshft 2nd ALU input = sign ex., sl IR[15-0]
Sequencing Dispatch Dispatch using ROM according to opcode

EECC550 - ShaabanEECC550 - Shaaban
#18 Lec # 6 Spring 2003 4-2-2003

LW Completion LW Completion MicrocodeMicrocode Sequence Sequence
Label ALU SRC1 SRC2 Dest. Memory Mem. Reg. PC Write Sequencing
Lw: Add rs Extend Seq

Read ALU Seq
 rt MEM Fetch

First microinstruction: Execute, effective memory address calculation

Second microinstruction: Memory, read using ALUout

Third microinstruction: Write Back, from memory to register rt

Field Name Value for Field Function of Field

ALU Add ALU adds, result in ALUout
SRC1 rs 1st ALU input = Reg[rs]
SRC2 Extend 2nd ALU input = sign ext. IR[15-0]
Sequencing Seq Go to sequential µinstruction

Field Name Values for Field Function of Field

Memory Read ALU Read memory using ALU output
Sequencing Seq Go to sequential µinstruction

Field Name Values for Field Function of Field

destination rt Mem Reg[rt] ← Mem
Sequencing Fetch Go to the first microinstruction (fetch)

EECC550 - ShaabanEECC550 - Shaaban
#19 Lec # 6 Spring 2003 4-2-2003

SW Completion SW Completion MicrocodeMicrocode Sequence Sequence
Label ALU SRC1 SRC2 Dest. Memory Mem. Reg. PC Write Sequencing

Sw: Add rs Extend Seq
Write ALU Fetch

First microinstruction: Execute, effective memory address calculation

Field Name Value for Field Function of Field

ALU Add ALU adds result in ALUout
SRC1 rs 1st ALU input = Reg[rs]
SRC2 Extend 2nd ALU input = sign ext. IR[15-0]
Sequencing Seq Go to sequential µinstruction

Second microinstruction: Memory, write to memory

Field Name Values for Field Function of Field

Memory Write ALU Write memory using ALU output, value B
Sequencing Fetch Go to the first microinstruction (fetch)

EECC550 - ShaabanEECC550 - Shaaban
#20 Lec # 6 Spring 2003 4-2-2003

R-Type CompletionR-Type Completion Microcode Microcode Sequence Sequence
Label ALU SRC1 SRC2 Dest. Memory Mem. Reg. PC Write Sequencing

Rtype: Func rs rt Seq
rd ALU Fetch

First microinstruction: Execute, perform ALU function

Second microinstruction: Write Back, ALU result in register rd

Field Name Values for Field Function of Field

destination rd ALU Reg[rd] ←← ALUout
Sequencing Fetch Go to the first microinstruction (fetch)

Field Name Value for Field Function of Field
ALU Func code ALU does function code
SRC1 rs 1st ALU input = Reg[rs]
SRC2 rt 2nd ALU input = Reg[rt]
Sequencing Seq Go to sequential µinstruction

EECC550 - ShaabanEECC550 - Shaaban
#21 Lec # 6 Spring 2003 4-2-2003

BEQ CompletionBEQ Completion Microcode Microcode Sequence Sequence

Label ALU SRC1 SRC2 Dest. Memory Mem. Reg. PC Write Sequencing

Beq: Subt. rs rt ALUoutCond. Fetch

Field Name Values for Field Function of Field

ALU Subt. ALU subtracts
SRC1 rs 1st ALU input = Reg[rs]
SRC2 rt 2nd ALU input = Reg[rt]
PC write ALUoutCond IF ALU Zero then PC ←← ALUout
Sequencing Fetch Go to the first microinstruction (fetch)

First microinstruction: Execute, compute condition, update PC

EECC550 - ShaabanEECC550 - Shaaban
#22 Lec # 6 Spring 2003 4-2-2003

ORI CompletionORI Completion Microcode Microcode Sequence Sequence
Label ALU SRC1 SRC2 Dest. Memory Mem. Reg. PC Write Sequencing

Ori: Or rs Extend0 Seq
rt ALU Fetch

First microinstruction: Execute, rs OR immediate

Second microinstruction: Write Back, ALU result in register rt

Field Name Values for Field Function of Field

destination rt ALU Reg[rt] ←← ALUout
Sequencing Fetch Go to the first microinstruction (fetch)

Field Name Value for Field Function of Field
ALU Or ALU does logical OR result in ALUout
SRC1 rs 1st ALU input = Reg[rs]
SRC2 Extend0 2nd ALU input = zero ext. IR[15-0]
Sequencing Seq Go to sequential µinstruction

EECC550 - ShaabanEECC550 - Shaaban
#23 Lec # 6 Spring 2003 4-2-2003

MicroprogramMicroprogram for The Control Unit for The Control Unit
Label ALU SRC1 SRC2 Dest. Memory Mem. Reg. PC Write Sequencing

Fetch: Add PC 4 Read PC IR ALU Seq
Add PC Extshft Dispatch

Lw: Add rs Extend Seq
Read ALU Seq

 rt MEM Fetch

Sw: Add rs Extend Seq
Write ALU Fetch

Rtype: Func rs rt Seq
rd ALU Fetch

Beq: Subt. rs rt ALUoutCond. Fetch

Ori: Or rs Extend0 Seq
rt ALU Fetch

EECC550 - ShaabanEECC550 - Shaaban
#24 Lec # 6 Spring 2003 4-2-2003

MicroprogrammingMicroprogramming Pros and Cons Pros and Cons
• Ease of design.

• Flexibility:
– Easy to adapt to changes in organization, timing, technology.

– Can make changes late in design cycle, or even in the field.

• Can implement very powerful instruction sets (just more
microprogram control memory is needed).

• Generality:
– Can implement multiple instruction sets on the same machine.

– Can tailor instruction set to application.

• Compatibility:
– Many organizations, same instruction set.

• Possibly more costly to implement than FSM control.

• Usually slower than FSM control.

EECC550 - ShaabanEECC550 - Shaaban
#25 Lec # 6 Spring 2003 4-2-2003

Exceptions Handling in MIPSExceptions Handling in MIPS
• Exceptions: Events Other than branches or jumps that change the

normal flow of instruction execution.

• Two main types: Interrupts, Traps.
– An interrupt usually comes from outside the processor (I/O devices) to get

the CPU’s attention to start a service routine.

– A trap usually originates from an event within the CPU (Arithmetic
overflow, undefined instruction) and initiates an exception handling routine
usually by the operating system.

• The current MIPS implementation being considered can be extended to
handle exceptions by adding two additional registers and the associated
control lines:
– EPC: A 32 bit register to hold the address of the affected instruction

– Cause: A register used to record the cause of the exception.

 In this implementation only the low-order bit is used to encode the two
handled exceptions: undefined instruction = 0

 overflow = 1

• Two additional states are added to the control finite state machine to
handle these exceptions.

EECC550 - ShaabanEECC550 - Shaaban
#26 Lec # 6 Spring 2003 4-2-2003

Two Types of ExceptionsTwo Types of Exceptions
• Interrupts:

– Caused by external events (e.g. I/O device requests).

– Asynchronous to program execution.

– May be handled between instructions.

– Simply suspend and resume user program.

• Traps:
– Caused by internal events:

• Exceptional conditions (e.g. overflow).

• Errors (e.g memory parity error).

• Faults (e.g. Page fault, non-resident page).

– Synchronous to program execution.

– Condition must be remedied by the system exception handler.

– Instruction may be executed again and program continued or
program may be aborted.

EECC550 - ShaabanEECC550 - Shaaban
#27 Lec # 6 Spring 2003 4-2-2003

Exception HandlingException Handling

• Exception = an unprogrammed control transfer
– System takes action to handle the exception which include:

• Recording the address of the offending instruction.

• Saving & restoring user program state.

• Returning control to user (unless user program is aborted).

user program
System
Exception
HandlerException:

return from
exception

EECC550 - ShaabanEECC550 - Shaaban
#28 Lec # 6 Spring 2003 4-2-2003

Addressing The Exception HandlerAddressing The Exception Handler
• Traditional Approach, Interrupt Vector:

– PC ←← MEM[IV_base + cause || 00]

– Used in: 370, 68000, Vax, 80x86, . . .

• RISC Handler Table:
– PC ←← IT_base + cause || 0000

– saves state and jumps

– Used in: Sparc, HP-PA, . . .

• MIPS Approach: Fixed entry
– PC ←← EXC_addr

– Actually a very small table:

• RESET entry

• TLB

• other

iv_base
cause

handler
code

iv_base
cause

handler entry code

EECC550 - ShaabanEECC550 - Shaaban
#29 Lec # 6 Spring 2003 4-2-2003

Exception Handling: Saving The StateException Handling: Saving The State

• Push it onto the stack:
– Vax, 68k, 80x86

• Save it in special registers:
– MIPS: EPC, BadVaddr, Status, Cause

• Shadow Registers:
– M88k.

• Save state in a shadow (a copy) of the internal CPU
registers.

EECC550 - ShaabanEECC550 - Shaaban
#30 Lec # 6 Spring 2003 4-2-2003

Additions to MIPS to Support ExceptionsAdditions to MIPS to Support Exceptions
• EPC: A 32-bit register used to hold the address of the affected

instruction (in reality register 14 of coprocessor 0).

• Cause: A register used to record the cause of the exception. In the
MIPS architecture this register is 32 bits, though some bits are
currently unused. Assume that bits 5 to 2 of this register encode the
two possible exception sources mentioned above:
– Undefined instruction = 0

– Arithmetic overflow = 1 (in reality, register 13 of coprocessor 0).

• BadVAddr: Register contains memory address at which memory
reference occurred (register 8 of coprocessor 0).

• Status: Interrupt mask and enable bits (register 12 of coprocessor 0).

• Control signals to write EPC , Cause, BadVAddr, and Status.

• Be able to write exception address into PC, increase mux to add as
input 01000000 00000000 00000000 01000000two (8000 0080hex).

• May have to undo PC = PC + 4, since we want EPC to point to
offending instruction (not its successor); PC = PC - 4

EECC550 - ShaabanEECC550 - Shaaban
#31 Lec # 6 Spring 2003 4-2-2003

Details of MIPS Status RegisterDetails of MIPS Status Register

• Mask = 1 bit for each of 5 hardware and 3 software
interrupt levels

1 → enables interrupts
0 → disables interrupts

• k = kernel/user
0 → was in the kernel when interrupt occurred
1 → was running user mode

• e = interrupt enable
0 → interrupts were disabled
1 → interrupts were enabled

Status
15 8 5

k
4
e

3
k

2
e

1
k

0
eMask

old prev current

EECC550 - ShaabanEECC550 - Shaaban
#32 Lec # 6 Spring 2003 4-2-2003

Details of MIPS Cause registerDetails of MIPS Cause register

• Pending interrupt: 5 hardware levels: bit set if interrupt occurs but
not yet serviced:

– Handles cases when more than one interrupt occurs at same time,
or while records interrupt requests when interrupts disabled.

• Exception Code: Encodes reasons for interrupt:
0 (INT) → external interrupt
4 (ADDRL) → Address error exception (load or instr fetch).
5 (ADDRS) → Address error exception (store).
6 (IBUS) → Bus error on instruction fetch.
7 (DBUS) → Bus error on data fetch.
8 (Syscall) → Syscall exception.
9 (BKPT) → Breakpoint exception.
10 (RI) → Reserved Instruction exception.
12 (OVF) → Arithmetic overflow exception.

Status
15 10

Pending

5 2

Code

EECC550 - ShaabanEECC550 - Shaaban
#33 Lec # 6 Spring 2003 4-2-2003

The MIPSThe MIPS Multicycle Multicycle Datapath With Datapath With
Exception Handling AddedException Handling Added

EECC550 - ShaabanEECC550 - Shaaban
#34 Lec # 6 Spring 2003 4-2-2003

Finite State Machine (FSM) SpecificationFinite State Machine (FSM) Specification
IR ← MEM[PC]
PC ← PC + 4

R-type

ALUout
 ← A fun B

R[rd]
 ← ALUout

ALUout
 ← A op ZX

R[rt]
 ← ALUout

ORi
ALUout

 ← A + SX

R[rt] ← M

M ←
MEM[ALUout]

LW

ALUout
 ← A + SX

MEM[ALUout]
 ← B

SW

“instruction fetch”

“decode”

E
xe

cu
te

M
em

or
y

W
rit

e-
ba

ck

0000

0001

0100

0101

0110

0111

1000

1001

1010

1011

1100

BEQ

0010

If A = B then
PC ← ALUout

A ← R[rs]
B ← R[rt]

ALUout
 ← ← PC +SX

To instruction fetch

To instruction fetch
To instruction fetch

EECC550 - ShaabanEECC550 - Shaaban
#35 Lec # 6 Spring 2003 4-2-2003

FSM Control Specification To Handle ExceptionsFSM Control Specification To Handle Exceptions
IR ← MEM[PC]
PC ← PC + 4

R-type

ALUout
 ← A fun B

R[rd]
 ← ALUout

ALUout
 ← A op ZX

R[rt]
 ← ALUout

ORi
ALUout

 ← A + SX

R[rt] ← M

M ←
MEM[ALUout]

LW

ALUout
 ← A + SX

MEM[ALUout]
 ← B

SW

“instruction fetch”

“decode”

E
xe

cu
te

M
em

or
y

W
rit

e-
ba

ck

0000

0001

0100

0101

0110

0111

1000

1001

1010

1011

1100

A ← R[rs]
B ← R[rt]

ALUout
 ← ← PC +SX EPC ←← PC - 4

PC ←← exp_addr
cause ←← 0

undefined instruction

EPC ←← PC - 4
PC ←← exp_addr
cause ←← 1

overflow

BEQ

0010

If A = B then
PC ← ALUout

To instruction fetch

To instruction fetch
To instruction fetch

EECC550 - ShaabanEECC550 - Shaaban
#36 Lec # 6 Spring 2003 4-2-2003

Control Finite State Machine
With Exception Detection

Version In Textbook
Figure 5.50

