Mainstream Computer System Components

CPU Core 2 GHz - 3.0 GHz 4-way Superscaler (RISC or RISC-core (x86):
Dynamic scheduling, Hardware speculation One core or multi-core (2-4) per chip
Multiple FP, integer Fus, Dynamic branch prediction …

Double Date Rate (DDR) SDRAM

Current DDR2 SDRAM Example:
PC2-6400 (DDR2-800)
400 MHz (base chip clock)
64-128 bits wide
4-way interleaved (4-banks)
~6.4 GBYTES/SEC (peak)
(one 64bit channel)
~12.8 GBYTES/SEC (peak)
(two 64bit channels)

DDR SDRAM Example:
PC3200 (DDR-400)
200 MHz (base chip clock)
64-128 bits wide
4-way interleaved (4-banks)
~3.2 GBYTES/SEC (peak)
(one 64bit channel)
~6.4 GBYTES/SEC
(two 64bit channels)

Single Date Rate SDRAM
PC100/PC133
100-133MHz (base chip clock)
64-128 bits wide
2-way interleaved (2-banks)
~ 900 MBYTES/SEC peak (64bit)

RAMbus DRAM (RDRAM)
400 MHz DDR
16 bits wide (32 banks)
~ 1.6 GBYTES/SEC (peak)

CPU

Caches

SRAM

System Bus

Off or On-chip

Memory Controller

Memory

System Memory

DRAM)

Memory Bus

Controllers

Disks
Displays
Keyboards

Adapters

I/O Buses

NICs

Networks

I/O Devices:
I/O Subsystem: 4th Edition in Chapter 6
(3rd Edition in Chapter 7)

North Bridge

South Bridge

Chipset

AKA System Core Logic

SRAM

L1
L1
16-128K
1-2 way set associative (on chip), separate or unified
L2
256K-2M
4-32 way set associative (on chip) unified
L3
2-16M
8-32 way set associative (off or on chip) unified

Examples:

AMD K8: HyperTransport
Alpha, AMD K7: EV6, 200-400 MHz
Intel PII, PIII: GTL+ 133 MHz
Intel P4 800 MHz

North Bridge

South Bridge

Chipset

AKA System Core Logic

EECC551 - Shaaban

System Bus = CPU-Memory Bus = Front Side Bus (FSB)
The Memory Hierarchy

- Review of Memory Hierarchy & Cache Basics (from 550)
 - Cache Basics:
 - CPU Performance Evaluation with Cache
- Classification of Steady-State Cache Misses:
 - The Three C’s of cache Misses
- Cache Write Policies/Performance Evaluation
- Cache Write Miss Policies
- Multi-Level Caches & Performance

- Main Memory:
 - Performance Metrics: Latency & Bandwidth
 - Key DRAM Timing Parameters
 - DRAM System Memory Generations
 - Basic Memory Bandwidth Improvement/Miss Penalty Reduction Techniques

- Techniques To Improve Cache Performance:
 - Reduce Miss Rate
 - Reduce Cache Miss Penalty
 - Reduce Cache Hit Time

- Virtual Memory
 - Benefits, Issues/Strategies
 - Basic Virtual → Physical Address Translation: Page Tables
 - Speeding Up Address Translation: Translation Lookaside Buffer (TLB)

Cache exploits access locality to:
1. Lower AMAT by hiding long main memory access latency.
2. Lower demands on main memory bandwidth.

4th Edition: Chapter 5.3
3rd Edition: Chapter 5.8, 5.9

i.e Memory latency reduction

EECC551 - Shaaban

#2 Lec # 10 Winter 2009 2-8-2010
Memory Access Latency Reduction & Hiding Techniques

Memory Latency Reduction Techniques:

- Faster Dynamic RAM (DRAM) Cells: Depends on VLSI processing technology.
- Wider Memory Bus Width: Fewer memory bus accesses needed (e.g. 128 vs. 64 bits)
- Burst Mode Memory Access
- Multiple Memory Banks:
 - At DRAM chip level (SDR, DDR, DDR2, DDR3 SDRAM), module or channel levels.
- Integration of Memory Controller with Processor: e.g. AMD’s current processor architecture
- New Emerging Faster RAM Technologies: e.g. Magnetoresistive Random Access Memory (MRAM)

Memory Latency Hiding Techniques:

- Memory Hierarchy: One or more levels of smaller and faster memory (SRAM-based cache) on- or off-chip that exploit program access locality to hide long main memory latency.
- Pre-Fetching: Request instructions and/or data from memory before actually needed to hide long memory access latency.
Main Memory

- Main memory generally utilizes Dynamic RAM (DRAM), which use a single transistor to store a bit, but require a periodic data refresh by reading every row increasing cycle time. DRAM: Slow but high density
- Static RAM may be used for main memory if the added expense, low density, high power consumption, and complexity is feasible (e.g. Cray Vector Supercomputers). SRAM: Fast but low density
- Main memory performance is affected by:
 - **Memory latency**: Affects cache miss penalty, M. Measured by:
 - **Memory Access time**: The time it takes between a memory access request is issued to main memory and the time the requested information is available to cache/CPU.
 - **Memory Cycle time**: The minimum time between requests to memory (greater than access time in DRAM to allow address lines to be stable)
 - **Peak Memory bandwidth**: The maximum sustained data transfer rate between main memory and cache/CPU.
 - In current memory technologies (e.g Double Data Rate SDRAM) published peak memory bandwidth does not take account most of the memory access latency.
 - This leads to achievable realistic memory bandwidth < peak memory bandwidth

4th Edition: Chapter 5.3
3rd Edition: Chapter 5.8, 5.9
Logical Dynamic RAM (DRAM) Chip Organization
(16 Mbit)

Control Signals:
1 - Row Access Strobe (RAS): Low to latch row address
2- Column Address Strobe (CAS): Low to latch column address
3- Write Enable (WE) or Output Enable (OE)
4- Wait for data to be ready

Basic Steps:
1 - Supply Row Address 2- Supply Column Address 3- Get Data

A periodic data refresh is required by reading every bit

D, Q share the same pins (Single transistor per bit)
Four Key DRAM Timing Parameters

• **t_{RAC}**: Minimum time from RAS (Row Access Strobe) line falling (activated) to the valid data output.
 - Used to be quoted as the nominal speed of a DRAM chip
 - For a typical 64Mb DRAM $t_{RAC} = 60$ ns

• **t_{RC}**: Minimum time from the start of one row access to the start of the next (memory cycle time).
 - $t_{RC} = t_{RAC} +$ RAS Precharge Time
 - $t_{RC} = 110$ ns for a 64Mbit DRAM with a t_{RAC} of 60 ns

• **t_{CAC}**: Minimum time from CAS (Column Access Strobe) line falling to valid data output.
 - 12 ns for a 64Mbit DRAM with a t_{RAC} of 60 ns

• **t_{PC}**: Minimum time from the start of one column access to the start of the next.
 - $t_{PC} = t_{CAC} +$ CAS Precharge Time
 - About 25 ns for a 64Mbit DRAM with a t_{RAC} of 60 ns
Simplified Asynchronous DRAM Read Timing

Memory Cycle Time = tRC = tRAC + RAS Precharge Time

- tRAC: Minimum time from RAS (Row Access Strobe) line falling to the valid data output.
- tRC: Minimum time from the start of one row access to the start of the next (memory cycle time).
- tCAC: Minimum time from CAS (Column Access Strobe) line falling to valid data output.
- tPC: Minimum time from the start of one column access to the start of the next.

Peak Memory Bandwidth = Memory bus width / Memory cycle time

Example: Memory Bus Width = 8 Bytes, Memory Cycle time = 200 ns
Peak Memory Bandwidth = 8 / 200 x 10^-9 = 40 x 10^6 Bytes/sec

Source: http://arstechnica.com/paedia/r/ram_guide/ram_guide.part2-1.html
Simplified DRAM Speed Parameters

• **Row Access Strobe (RAS) Time:** (similar to t_{RAC}):
 - Minimum time from RAS (Row Access Strobe) line falling (activated) to the first valid data output.
 - A major component of memory latency.
 - Only improves ~ 5% every year.

• **Column Access Strobe (CAS) Time/data transfer time:** (similar to t_{CAC})
 - The minimum time required to read additional data by changing column address while keeping the same row address.
 - Along with memory bus width, determines peak memory bandwidth.
 - Example: For SDRAM Peak Memory Bandwidth = Bus Width / (0.5 x t_{CAC})
 - For PC100 SDRAM Memory bus width = 8 bytes $t_{CAC} = 20$ns
 - Peak Bandwidth = $8 \times 100 \times 10^6 = 800 \times 10^6$ bytes/sec

Simplified SDRAM Burst-Mode Access Timing

For PC100 SDRAM: Clock = 100 MHz
DRAM Generations

<table>
<thead>
<tr>
<th>Year</th>
<th>Size</th>
<th>RAS (ns)</th>
<th>CAS (ns)</th>
<th>Cycle Time</th>
<th>Memory Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1980</td>
<td>64 Kb</td>
<td>150-180</td>
<td>75</td>
<td>250 ns</td>
<td>Page Mode</td>
</tr>
<tr>
<td>1983</td>
<td>256 Kb</td>
<td>120-150</td>
<td>50</td>
<td>220 ns</td>
<td>Page Mode</td>
</tr>
<tr>
<td>1986</td>
<td>1 Mb</td>
<td>100-120</td>
<td>25</td>
<td>190 ns</td>
<td>Fast Page Mode</td>
</tr>
<tr>
<td>1989</td>
<td>4 Mb</td>
<td>80-100</td>
<td>20</td>
<td>165 ns</td>
<td>Page Mode</td>
</tr>
<tr>
<td>1992</td>
<td>16 Mb</td>
<td>60-80</td>
<td>15</td>
<td>120 ns</td>
<td>EDO</td>
</tr>
<tr>
<td>1996</td>
<td>64 Mb</td>
<td>50-70</td>
<td>12</td>
<td>110 ns</td>
<td>PC66 SDRAM</td>
</tr>
<tr>
<td>1998</td>
<td>128 Mb</td>
<td>50-70</td>
<td>10</td>
<td>100 ns</td>
<td>PC100 SDRAM</td>
</tr>
<tr>
<td>2000</td>
<td>256 Mb</td>
<td>45-65</td>
<td>7</td>
<td>90 ns</td>
<td>PC133 SDRAM</td>
</tr>
<tr>
<td>2002</td>
<td>512 Mb</td>
<td>40-65</td>
<td>5</td>
<td>80 ns</td>
<td>PC2700 DDR SDRAM</td>
</tr>
</tbody>
</table>

- Asynchronous DRAM
- Synchronous DRAM

<table>
<thead>
<tr>
<th>Capacity</th>
<th>Bandwidth</th>
<th>Latency</th>
</tr>
</thead>
<tbody>
<tr>
<td>8000:1</td>
<td>15:1</td>
<td>3:1</td>
</tr>
</tbody>
</table>

A major factor in cache miss penalty M
Asynchronous DRAM:

Page Mode DRAM (Early 80s)

- **Regular DRAM Organization:**
 - N rows x N column x M-bit
 - Read & Write M-bit at a time
 - Each M-bit access requires a RAS / CAS cycle

Non-burst Mode Memory Access

Memory Cycle Time

1 - Supply Row Address 2 - Supply Column Address 3 - Get Data

EECC551 - Shaaban
Fast Page Mode DRAM (late 80s)

- Fast Page Mode DRAM
 - N x M “SRAM” to save a row

- After a row is read into the register
 - Only CAS is needed to access other M-bit blocks on that row
 - RAS_L remains asserted while CAS_L is toggled

- The first “burst mode” DRAM

A read burst of length 4 shown

Burst Mode Memory Access

EECC551 - Shaaban
Simplified Asynchronous Fast Page Mode (FPM) DRAM Read Timing

FPM DRAM speed rated using tRAC ~ 50-70ns

Typical timing at 66 MHz: 5-3-3-3 (burst of length 4)
For bus width = 64 bits = 8 bytes cache block size = 32 bytes
It takes = 5+3+3+3 = 14 memory cycles or 15 ns x 14 = 210 ns to read 32 byte block
Miss penalty for CPU running at 1 GHz = M = 15 x 14 = 210 CPU cycles

One memory cycle at 66 MHz = 1000/66 = 15 CPU cycles at 1 GHz
Simplified Asynchronous Extended Data Out (EDO) DRAM Read Timing

- Extended Data Out DRAM operates in a similar fashion to Fast Page Mode DRAM except putting data from one read on the output pins at the same time the column address for the next read is being latched in.

EDO Read

EDO DRAM speed rated using tRAC ~ 40-60ns

Typical timing at 66 MHz: 5-2-2-2 (burst of length 4)
For bus width = 64 bits = 8 bytes Max. Bandwidth = 8 x 66 / 2 = 264 Mbytes/sec
It takes = 5+2+2+2 = 11 memory cycles or 15 ns x 11 = 165 ns to read 32 byte cache block
Minimum Read Miss penalty for CPU running at 1 GHz = M = 11 x 15 = 165 CPU cycles

One memory cycle at 66 MHz = 1000/66 = 15 CPU cycles at 1 GHz

Source: http://arstechnica.com/paedia/r/ram_guide/ram_guide.part2-1.html
Basic Memory Bandwidth Improvement/Miss Penalty (M) Latency Reduction Techniques

1. **Wider Main Memory (CPU-Memory Bus):**

 Memory bus width is increased to a number of words (usually up to the size of a cache block).
 - Memory bandwidth is proportional to memory bus width.
 - e.g. Doubling the width of cache and memory doubles potential memory bandwidth available to the CPU.
 - The miss penalty is reduced since fewer memory bus accesses are needed to fill a cache block on a miss.

2. **Interleaved (Multi-Bank) Memory:**

 Memory is organized as a number of independent banks.
 - Multiple interleaved memory reads or writes are accomplished by sending memory addresses to several memory banks at once or pipeline access to the banks.
 - **Interleaving factor:** Refers to the mapping of memory addressees to memory banks. Goal reduce bank conflicts.
 - e.g. using 4 banks (width one word), bank 0 has all words whose address is:

 (word address mod) 4 = 0

 The above two techniques can also be applied to any cache level to reduce cache hit time and increase cache bandwidth.
Three examples of bus width, memory width, and memory interleaving to achieve higher memory bandwidth

Simplest design:
Everything is the width of one word for example (lowest performance)

Wider memory, bus and cache (highest performance)

Narrow bus and cache with interleaved memory banks

Front Side Bus (FSB) = System Bus = CPU-memory Bus
Four Way (Four Banks) Interleaved Memory

Memory Bank Number

Bank Width = One Word
Bank Number = (Word Address) Mod (4)
Memory Bank Interleaving (Multi-Banked Memory)

Can be applied at:
1- DRAM chip level (e.g. SDRAM, DDR)
2- DRAM module level
3- DRAM channel level

Access Pattern without Interleaving: (One Memory Bank)

D1 available
Start Access for D1
Start Access for D2

Pipeline access to different memory banks to increase effective bandwidth

Access Pattern with 4-way Interleaving:

Access Bank 0
Access Bank 1
Access Bank 2
Access Bank 3

We can Access Bank 0 again

Number of banks \geq Number of cycles to access word in a bank

Bank interleaving does not reduce latency of accesses to the same bank
Synchronous DRAM Characteristics Summary

<table>
<thead>
<tr>
<th></th>
<th>SDR (Single Data Rate) SDRAM</th>
<th>DDR (Double Data Rate) SDRAM</th>
<th>RAMbus</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PC100</td>
<td>DDR266 (PC2100)</td>
<td></td>
</tr>
<tr>
<td>Potential Bandwidth</td>
<td>0.8 GB/s</td>
<td>2.133 GB/s</td>
<td>1.6 GB/s</td>
</tr>
<tr>
<td></td>
<td>(\frac{1}{8} \times 8 = 0.8)</td>
<td>(\frac{0.133 \times 2 \times 8}{2} = 2.1)</td>
<td>(\frac{0.4 \times 2 \times 8}{2} = 1.6)</td>
</tr>
<tr>
<td>Interface Signals</td>
<td>64(72) data</td>
<td>64(72) data</td>
<td>16(18) data</td>
</tr>
<tr>
<td></td>
<td>168 pins</td>
<td>168 pins</td>
<td>184 pins</td>
</tr>
<tr>
<td>Interface Frequency</td>
<td>100 MHz</td>
<td>133 MHz</td>
<td>400 MHz</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Latency Range</td>
<td>30-90 nS</td>
<td>18.8-64 nS</td>
<td>35-80 nS</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>DDR2-400 PC2-3200 DDR2 (Mid 2004)</th>
<th>DRDRAM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Potential Bandwidth</td>
<td>3.2 GB/s (Similar to PC3200) ((\frac{0.2 \times 2 \times 8}{2} = 3.2))</td>
<td></td>
</tr>
<tr>
<td>Interface Signals</td>
<td>64(72) data</td>
<td>16(18) data</td>
</tr>
<tr>
<td></td>
<td>184 pins</td>
<td>184 pins</td>
</tr>
<tr>
<td>Interface Frequency</td>
<td>200 MHz (Now 400 MHz PC2-6400)</td>
<td>400 MHz</td>
</tr>
<tr>
<td>Latency Range</td>
<td>17.5-42.6 nS</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>DRDRAM</th>
</tr>
</thead>
<tbody>
<tr>
<td># of Banks per DRAM Chip</td>
<td>2</td>
</tr>
<tr>
<td>Bus Width Bytes</td>
<td>8</td>
</tr>
</tbody>
</table>

The latencies given only account for memory module latency and do not include memory controller latency or other address/data line delays. Thus realistic access latency is longer.

All synchronous memory types above use burst-mode access with multiple memory banks per DRAM chip.
Synchronous Dynamic RAM, (SDR SDRAM) Organization

SDR SDRAM Peak Memory Bandwidth =
= Bus Width \/(0.5 \times t_{CAC})
= Bus Width \times Clock rate

DDR SDRAM organization is similar but four banks are used in each DDR SDRAM chip instead of two.

Data transfer on both rising and falling edges of the clock

SDRAM speed is rated at max. clock speed supported:
100MHz = PC100
133MHz = PC133

DDR SDRAM rated by maximum or peak memory bandwidth
PC3200 = 8 bytes x 200 MHz x 2 = 3200 Mbytes/sec

SDR = Single Data Rate
DDR = Double Data Rate

Also DDR2 DDR3 increases the number of banks to 8 banks

SDR SDRAM

Peak Memory Bandwidth =
= Bus Width \/(0.5 \times t_{CAC})
= Bus Width \times Clock rate \times 2

DDR SDRAM

Peak Memory Bandwidth =
= Bus Width \/(0.25 \times t_{CAC})
= Bus Width \times Clock rate \times 2

A0...A10 Address Lines

Mode Register

Control Logic and Finite State Machine

Data Out Buffer

Data In Buffer

Bank A DRAM (2M \times 8)

Sense Amplifiers and I/O Gating

Latch

Row Decoder

Bank B DRAM (2M \times 8)

Sense Amplifiers and I/O Gating

Latch

Row Decoder

Column Address Latch

Column Address Latch

Row Address Latch

Refresh Counter

Burst Counter

Column Decoder

Timing Comparison

SDR, DDR SDRAM
Comparison of Synchronous Dynamic RAM SDRAM Generations:

DDR2 Vs. DDR and SDR SDRAM

- **Single Data Rate (SDR) SDRAM transfers data on every rising edge of the clock.**
- Whereas both DDR and DDR2 are double pumped; they transfer data on the rising and falling edges of the clock.

DDR2 vs. DDR:
- DDR2 doubles bus frequency for the same physical DRAM chip clock rate (as shown), thus doubling the effective data rate another time.
- Ability for much higher clock speeds than DDR, due to design improvements (still 4-banks per chip):
 - DDR2's bus frequency is boosted by electrical interface improvements, on-die termination, prefetch buffers and off-chip drivers.
- However, latency vs. DDR is greatly increased as a trade-off.

Peak bandwidth given for a single 64bit memory channel (i.e 8-byte memory bus width)

- **Shown: DDR2-533 (PC2-4200)** ~ 4.2 GB/s peak bandwidth
- **Shown: DDR-266 (PC-2100)** ~ 2.1 GB/s peak bandwidth
- **Shown: PC133** ~ 1.05 GB/s peak bandwidth

Figure Source: http://www.elpida.com/pdfs/E0678E10.pdf
Simplified SDR SDRAM/DDR SDRAM Read Timing

SDRAM clock cycle time ~ ½ tCAC

SDRAM
- Typical timing at 133 MHz (PC133 SDRAM) : 5-1-1-1
- For bus width = 64 bits = 8 bytes
- Max. Bandwidth = 133 x 8 = 1064 Mbytes/sec
- It takes = 5+1+1+1 = 8 memory cycles or 7.5 ns x 8 = 60 ns to read 32 byte cache block
- Minimum Read Miss penalty for CPU running at 1 GHz = M = 7.5 x 8 = 60 CPU cycles

DDR SDRAM:
- Possible timing at 133 MHz (DDR x2) (PC2100 DDR SDRAM) : 5 -.5-.5-.5
- For bus width = 64 bits = 8 bytes
- Max. Bandwidth = 133 x 2 x 8 = 2128 Mbytes/sec
- It takes = 5+.5+.5+.5 = 6.5 memory cycles or 7.5 ns x 6.5 = 49 ns to read 32 byte cache block
- Minimum Read Miss penalty for CPU running at 1 GHz = M = 7.5 x 6.5 = 49 CPU cycles

Latency (memory access time)

- DDR SDRAM (Late 90s-2006)
- SDRAM (mid 90s)

In this example for SDR SDRAM: M = 60 cycles for DDR SDRAM: M = 49 cycles
Thus accounting for access latency DDR is 60/49 = 1.22 times faster
Not twice as fast (2128/1064 = 2) as indicated by peak bandwidth!
The Impact of Larger Cache Block Size on Miss Rate

- A larger cache block size improves cache performance by taking better advantage of spatial locality. However, for a fixed cache size, larger block sizes mean fewer cache block frames.

- Performance keeps improving to a limit when the fewer number of cache block frames increases conflicts and thus overall cache miss rate.

For SPEC92

Block Size (bytes) 16 32 64 128 256

Miss Rate 0% 5% 10% 15% 20% 25%

- Larger cache block size improves spatial locality, reducing compulsory misses.

Source:
- 4th Edition: Appendix C.3
- 3rd Edition: Chapter 5.5
Memory Width, Interleaving: Performance Example

(i.e multiple memory banks)

Given the following system parameters with single unified cache level L₁ (ignoring write policy):

Block size = 1 word Memory bus width = 1 word Miss rate = 3% M = Miss penalty = 32 cycles

(4 cycles to send address 24 cycles access time, 4 cycles to send a word to CPU)

<table>
<thead>
<tr>
<th>Memory access/instruction = 1.2</th>
<th>CPI_{\text{execution}} (ignoring cache misses) = 2</th>
</tr>
</thead>
</table>

Miss rate (block size = 2 words = 8 bytes) = 2% Miss rate (block size = 4 words = 16 bytes) = 1%

- The CPI of the base machine with 1-word blocks = 2 + (1.2 x 0.03 x 32) = 3.15 (For Base system)

Increasing the block size to two words (64 bits) gives the following CPI: (miss rate = 2%)

- 32-bit bus and memory, no interleaving, M = 2 x 32 = 64 cycles CPI = 2 + (1.2 x 0.02 x 64) = 3.54
- 32-bit bus and memory, interleaved, M = 4 + 24 + 8 = 36 cycles CPI = 2 + (1.2 x 0.02 x 36) = 2.86
- 64-bit bus and memory, no interleaving, M = 32 cycles CPI = 2 + (1.2 x 0.02 x 32) = 2.77

Increasing the block size to four words (128 bits); resulting CPI: (miss rate = 1%)

- 32-bit bus and memory, no interleaving , M = 4 x 32 = 128 cycles CPI = 2 + (1.2 x 0.01 x 128) = 3.54
- 32-bit bus and memory, interleaved , M = 4 + 24 + 16 = 44 cycles CPI = 2 + (1.2 x 0.01 x 44) = 2.53
- 64-bit bus and memory, no interleaving, M = 2 x 32 = 64 cycles CPI = 2 + (1.2 x 0.01 x 64) = 2.77
- 64-bit bus and memory, interleaved, M = 4 + 24 + 8 = 36 cycles CPI = 2 + (1.2 x 0.01 x 36) = 2.43
- 128-bit bus and memory, no interleaving, M = 32 cycles CPI = 2 + (1.2 x 0.01 x 32) = 2.38

Miss Penalty = M = Number of CPU stall cycles for an access missed in cache and satisfied by main memory
Three-Level Cache Example

- CPU with $\text{CPI}_{\text{execution}} = 1.1$ running at clock rate = 500 MHz
- 1.3 memory accesses per instruction.
- L_1 cache operates at 500 MHz (no stalls on a hit in L1) with a miss rate of 5%
- L_2 hit access time = 3 cycles ($T_2 = 2$ stall cycles per hit), local miss rate 40%
- L_3 hit access time = 6 cycles ($T_3 = 5$ stall cycles per hit), local miss rate 50%
- Memory access penalty, $M = 100$ cycles (stall cycles per access). Find CPI.

With No Cache, \[\text{CPI} = 1.1 + 1.3 \times 100 = 131.1 \]
With single L_1, \[\text{CPI} = 1.1 + 1.3 \times 0.05 \times 100 = 7.6 \]
With L_1, L_2 \[\text{CPI} = 1.1 + 1.3 \times (0.05 \times 0.6 \times 2 + 0.05 \times 0.4 \times 100) = 3.778 \]

$$\text{CPI} = \text{CPI}_{\text{execution}} + \text{Mem Stall cycles per instruction}$$

Mem Stall cycles per instruction = Mem accesses per instruction \times Stall cycles per access

Stall cycles per memory access = $(1-H_1) \times H_2 \times T_2 + (1-H_1) \times (1-H_2) \times H_3 \times T_3 + (1-H_1)(1-H_2) (1-H_3) \times M$

\[= 0.05 \times 0.6 \times 2 + 0.05 \times 0.4 \times 0.5 \times 5 + 0.05 \times 0.4 \times 0.5 \times 100 \]
\[= 0.06 + 0.05 + 1 = 1.11 \]

$AMAT = 1.11 + 1 = 2.11$ cycles (vs. $AMAT = 3.06$ with L_1, L_2, vs. 5 with L_1 only)

\[\text{CPI} = 1.1 + 1.3 \times 1.11 = 2.54 \quad \text{With L1, L2, L3} \]

Speedup compared to L_1 only = $7.6/2.54 = 3$
Speedup compared to L_1, L_2 = $3.778/2.54 = 1.49$
3-Level (All Unified) Cache Performance

Memory Access Tree (Ignoring Write Policy)

CPU Stall Cycles Per Memory Access

CPU Memory Access (100%)

- **H1** = .95 or 95%
- **L1 Hit:**
 - Hit Access Time = 1
 - Stalls Per access = 0
 - Stalls = H1 x 0 = 0
 - (No Stall)
- **L1 Miss:**
 - % = (1-H1) = .05 or 5%

L1 Miss, L2 Hit:

- Hit Access Time = T2 + 1 = 3
- Stalls per L2 Hit = T2 = 2
- Stalls = (1-H1) x H2 x T2
 - = .05 x .6 x 2 = .06

L1 Miss, L2 Miss:

- % = (1-H1)(1-H2) = .05 x .4 = .02 or 2%

L1 Miss, L2 Miss, L3 Hit:

- Hit Access Time = T3 + 1 = 6
- Stalls per L3 Hit = T3 = 5
- Stalls = (1-H1) x (1-H2) x H3 x T3
 - = .01 x 5 = .05 cycles

AMAT = 1 + Stall cycles per memory access

- = 1 + 1.11 = 2.11 cycles

T2 = 2 cycles = Stalls per hit access for Level 2
T3 = 5 cycles = Stalls per hit access for Level 3

M = Memory Miss Penalty = M = 100 cycles

CPI = **CPI** execution + (1 + fraction of loads and stores) x stalls per access

- **H1** = 95%
- **T1** = 0 cycles
- **H2** = 60%
- **T2** = 2 cycles
- **H3** = 50%
- **T3** = 5 cycles
- **M** = 100 cycles

- Stalls on a hit

Repeated here from lecture 8

Memory Access Tree

For Example
Program Steady-State Bandwidth-Usage Example

- In the previous example with three levels of cache (all unified, ignore write policy)
- CPU with $\text{CPI}_{\text{execution}} = 1.1$ running at clock rate = 500 MHz
- 1.3 memory accesses per instruction.
- L_1 cache operates at 500 MHz (no stalls on a hit in L_1) with a miss rate of 5%
- L_2 hit access time = 3 cycles ($T_2= 2$ stall cycles per hit), local miss rate 40%
- L_3 hit access time = 6 cycles ($T_3= 5$ stall cycles per hit), local miss rate 50%,
- Memory access penalty, $M= 100$ cycles (stall cycles per access to deliver 32 bytes from main memory to CPU)

- We found the CPI:
 - With No Cache, $\text{CPI} = 1.1 + 1.3 \times 100 = 131.1$
 - With single L_1, $\text{CPI} = 1.1 + 1.3 \times 0.05 \times 100 = 7.6$
 - With L_1, L_2 $\text{CPI} = 1.1 + 1.3 \times (0.05 \times 0.6 \times 2 + 0.05 \times 0.4 \times 100) = 3.778$
 - With L_1, L_2, L_3 $\text{CPI} = 1.1 + 1.3 \times 1.11 = 2.54$

Assuming that all cache blocks are 32 bytes
For each of the three cases with cache:

A. What is the peak (or maximum) number of memory accesses and effective peak bandwidth for each cache level and main memory?

B. What is the total number of memory accesses generated by the CPU per second?

C. What percentage of these memory accesses reach each cache level/memory and what percentage of each cache level/memory bandwidth is used by the CPU?
A. What is the peak (or maximum) number of memory accesses and effective peak bandwidth for each cache level and main memory?

- L1 cache requires 1 CPU cycle to deliver 32 bytes, thus:
 Maximum L1 accesses per second = \(500 \times 10^6 \) accesses/second
 Maximum effective L1 bandwidth = \(32 \times 500 \times 10^6 = 16,000 \times 10^6 = 16 \times 10^9 \) byes/sec

- L2 cache requires 3 CPU cycles to deliver 32 bytes, thus:
 Maximum L2 accesses per second = \(\frac{500}{3} \times 10^6 = 166.67 \times 10^6 \) accesses/second
 Maximum effective L2 bandwidth = \(32 \times 166.67 \times 10^6 = 5,333.33 \times 10^6 = 5.33 \times 10^9 \) byes/sec

- L3 cache requires 6 CPU cycles to deliver 32 bytes, thus:
 Maximum L3 accesses per second = \(\frac{500}{6} \times 10^6 = 83.33 \times 10^6 \) accesses/second
 Maximum effective L3 bandwidth = \(32 \times 166.67 \times 10^6 = 2,666.67 \times 10^6 = 2.67 \times 10^9 \) byes/sec

- Memory requires 101 CPU cycles (\(101 = M+1 = 100+1 \)) to deliver 32 bytes, thus:
 Maximum main memory accesses per second = \(\frac{500}{101} \times 10^6 = 4.95 \times 10^6 \) accesses/second
 Maximum effective main memory bandwidth = \(32 \times 4.95 \times 10^6 = 158.42 \times 10^6 \) byes/sec

Cache block size = 32 bytes
B. What is the total number of memory accesses generated by the CPU per second?

- The total number of memory accesses generated by the CPU per second = (memory access/instruction) x clock rate / CPI = 1.3 x 500 x 10^6 / CPI = 650 x 10^6 / CPI
- With single L1 cache CPI was found = 7.6
 - CPU memory accesses = 650 x 10^6 / 7.6 = 85 x 10^6 accesses/sec

C. What percentage of these memory accesses reach each cache level/memory and what percentage of each cache level/memory bandwidth is used by the CPU?

- For L1:
 The percentage of CPU memory accesses that reach L1 = 100%
 L1 Cache bandwidth usage = 32 x 85 x 10^6 = 2,720 x 10^6 = 2.7 x 10^9 byes/sec
 Percentage of L1 bandwidth used = 2,720 / 16,000 = 0.17 or 17%
 (or by just dividing CPU accesses / peak L1 accesses = 85/500 = 0.17 = 17%)

- For Main Memory:
 The percentage of CPU memory accesses that reach main memory = (1-H1) = 0.05 or 5%
 Main memory bandwidth usage = 0.05 x 32 x 85 x 10^6 = 136 x 10^6 byes/sec
 Percentage of main memory bandwidth used = 136 / 158.42 = 0.8585 or 85.85%
For CPU with L1, L2 Cache:

For CPU with L1, L2 Cache:

B. What is the total number of memory accesses generated by the CPU per second?

- The total number of memory accesses generated by the CPU per second = (memory access/instruction) x clock rate / CPI = 1.3 x 500 x 10^6 / CPI = 650 x 10^6 / CPI
 - With L1, L2 cache CPI was found = 3.778
 - CPU memory accesses = 650 x 10^6 / 3.778 = 172 x 10^6 accesses/sec

C. What percentage of these memory accesses reach each cache level/memory and what percentage of each cache level/memory bandwidth is used by the CPU?

- For L1:
 - The percentage of CPU memory accesses that reach L1 = 100%
 - L1 Cache bandwidth usage = 32 x 172 x 10^6 = 5,505 x 10^6 = 5.505 x 10^9 bytes/sec
 - Percentage of L1 bandwidth used = 5,505 / 16,000 = 0.344 or 34.4%
 (or by just dividing CPU accesses / peak L1 accesses = 172/500 = 0.344 = 34.4%)

- For L2:
 - The percentage of CPU memory accesses that reach L2 = (I-H1) = 0.05 or 5%
 - L2 Cache bandwidth usage = 0.05 x 32 x 172 x 10^6 = 275.28 x 10^6 bytes/sec
 - Percentage of L2 bandwidth used = 275.28 / 5,333.33 = 0.0516 or 5.16%
 (or by just dividing CPU accesses that reach L2 / peak L2 accesses = 0.05 x 172 / 166.67 = 8.6/166.67 = 0.0516 = 5.16%)

- For Main Memory:
 - The percentage of CPU memory accesses that reach main memory = (1-H1) x (1-H2) = 0.05 x 0.4 = 0.02 or 2%
 - Main memory bandwidth usage = 0.02 x 32 x 172 x 10^6 = 110.11 x 10^6 bytes/sec
 - Percentage of main memory bandwidth used = 110.11 / 158.42 = 0.695 or 69.5%

VS. With L1 only = 85 x 10^6 accesses/sec

Program Steady-State Bandwidth-Usage Example

Exercises:
- What if Level 1 (L1) is split?
- What if Level 2 (L2) is write back with write allocate?
Program Steady-State Bandwidth-Usage Example

- For CPU with L1, L2, L3 Cache:

 B. What is the total number of memory accesses generated by the CPU per second?

 - The total number of memory accesses generated by the CPU per second = (memory access/instruction) x clock rate / CPI = 1.3 x 500 x 10^6 / CPI = 650 x 10^6 / CPI

 - With L1, L2, L3 cache CPI was found = 2.54
 - CPU memory accesses = 650 x 10^6 / 2.54 = 255.9 x 10^6 accesses/sec

 C. What percentage of these memory accesses reach each cache level/memory and what percentage of each cache level/memory bandwidth is used by the CPU?

 - For L1:
 - The percentage of CPU memory accesses that reach L1 = 100%
 - L1 Cache bandwidth usage = 32 x 255.9 x 10^6 = 8,188 x 10^6 = 8.188 x 10^9 bytes/sec
 - Percentage of L1 bandwidth used = 8,188 / 16,000 = 0.5118 or 51.18%
 - (or by just dividing CPU accesses / peak L1 accesses = 172/500 = 0.344 = 34.4%)

 - For L2:
 - The percentage of CPU memory accesses that reach L2 = (1-H1) = 0.05 or 5%
 - L2 Cache bandwidth usage = 0.05 x 32 x 255.9 x 10^6 = 409.45 x 10^6 bytes/sec
 - Percentage of L2 bandwidth used = 409.45 / 5,333.33 = 0.077 or 7.7%
 - (or by just dividing CPU accesses that reach L2 / peak L2 accesses = 0.05 x 255.9 / 166.67 = 12.795 / 166.67 = 0.077 = 7.7%)

 - For L3:
 - The percentage of CPU memory accesses that reach L3 = (1-H1) x (1-H2) = 0.02 or 2%
 - L3 Cache bandwidth usage = 0.02 x 32 x 255.9 x 10^6 = 163.78 x 10^6 bytes/sec
 - Percentage of L3 bandwidth used = 163.78 / 2,666.67 = 0.061 or 6.1%
 - (or by just dividing CPU accesses that reach L3 / peak L3 accesses = 0.02 x 255.9 / 83.33 = 5.118 / 83.33 = 0.061 = 6.1%)

 - For Main Memory:
 - The percentage of CPU memory accesses that reach main memory = (1-H1) x (1-H2) x (1-H3) = 0.05 x .4 x .5 = 0.01 or 1%
 - Main memory bandwidth usage = 0.01 x 32 x 255.9 x 10^6 = 81.89 x 10^6 bytes/sec
 - Percentage of main memory bandwidth used = 110.11 / 158.42 = 0.517 or 51.7%

 Vs. With L1 only = 85 x 10^6 accesses/sec

 With L1, L2 = 172 x 10^6 accesses/sec

 Vs. With L1 = 85.5%

 With L1, L2 = 69.5%

Exercises: What if Level 1 (L1) is split?

What if Level 3 (L3) is write back with write allocate?
X86 CPU Dual Channel PC3200 DDR SDRAM

Sample (Realistic?) Bandwidth Data

Dual (64-bit) Channel PC3200 DDR SDRAM has a theoretical peak bandwidth of

400 MHz x 8 bytes x 2 = 6400 MB/s

Is memory bandwidth still an issue?

Source: The Tech Report 1-21-2004
X86 CPU Dual Channel PC3200 DDR SDRAM
Sample (Realistic?) Latency Data

PC3200 DDR SDRAM has a theoretical latency range of 18-40 ns (not accounting for memory controller latency or other address/data line delays).

Is memory latency still an issue?

X86 CPU Cache/Memory Performance Example:
AMD Athlon XP/64/FX Vs. Intel P4/Extreme Edition

Main Memory: Dual (64-bit) Channel PC3200 DDR SDRAM
peak bandwidth of 6400 MB/s

Source: The Tech Report 1-21-2004