Parallel Architectures History

Historically, parallel architecturestied to programming models
 Divergent architectures, with no predictable pattern of growth.

Systolic
Arrays

—

\gatlon Softwar
\System

/

Dataflow

Architecture|_

—» SIMD

\

—® \Message Passing

Shared Memory

'EECC756 - Shaaban ]—

#1 lec#2 Spring 2002 3-14-2002




Current TrendsIn Parallel Architectures

 Theextension of “computer architecture’ to support
communication and cooper ation:

— OLD: Instruction Set Architecture.
— NEW: Communication Architecture.

e Defines:

— Critical abstractions, boundaries, and primitives
(interfaces).

— Organizational structuresthat implement interfaces
(hardwar e or software).

o« Compilers, librariesand OS are important bridges today

'EECC756 - Shaaban ]—

#2 lec#2 Spring 2002 3-14-2002




Modern Parallel Architecture
L ayered Framework

CAD Database Scientific modeling Parallel applications
Multiprogramming Shared Message Data Programming models
address passing parallel

Compilation o _
or library Communication abstraction

: User/system boundary
IOperatmg systems support

Hardware/software boundary

Communication hardware

Physical communication medium

'EECC756 - Shaaban ]—

#3 lec#2 Spring 2002 3-14-2002




Programming M odels

* Programming methodology used in coding applications
o Specifiescommunication and synchronization

 Examples:
— Multiprogramming:
No communication or synchronization at program level
— Shared memory address space:
— Message passing:
Explicit point to point communication

— Data parall€l:

Moreregimented, global actions on data
* Implemented with shared address space or message passing

| EECC756 - Shaaban

#4 lec#2 Spring 2002 3-14-2002



Communication Abstraction

User-level communication primitives provided
— Realizesthe programming model.

— Mapping exists between language primitives of programming model
and these primitives

Supported directly by hardware, or via OS, or via user software.
L ot of debate about what to support in software and gap between
layers.

Today:

— Hardware/softwar e interface tendsto beflat, i.e. complexity roughly
uniform.

— Compilersand softwar e play important roles as bridges today.
— Technology trends exert strong influence

Result is convergencein organizational structure
— Relatively simple, general purpose communication primitives.

'EECC756 - Shaaban ]—

#5 lec#2 Spring 2002 3-14-2002




Communication Architecture

= User/System Interface + Implementation

o User/System Interface:

— Communication primitives exposed to user-level by hardware and
system-level software.

e Implementation:

— Organizational structuresthat implement the primitives. hardware
or OS.

— How optimized are they? How integrated into processing node?
— Structure of network.

o Goals
— Performance
— Broad applicability
— Programmability
— Scalability
— Low Cost

'EECC756 - Shaaban ]—

#6 lec#2 Spring 2002 3-14-2002




Toward Architectural Convergence

Evolution and role of software have blurred boundary:
— Send/recelve supported on SAS machinesvia buffers.

— Can construct global address space on massively parallel (M P) message-passing
machines by carrying along pointer s specifying the process and local virtual
addr ess space.

— Shared virtual address space in message-passing machines can also be
established at the page level generating a page fault for remote pages handled
by sending a message.

Har dwar e or ganization conver ging too:

— Tighter integration even for M P (low-latency, high-bandwidth):
* Network interfacetightly integrated with memory/cache controller.
» Transfer data directly to/from user address space.
« DMA transfersacrossthe network.

— At lower level, even hardware SAS passes har dwar e messages.

Even clusters of workstations/SM Ps ar e becoming parallel systems:
— Emergence of fast system area networks (SAN): ATM, fiber channd ...
Programming models distinct, but or ganizations conver ging:

— Nodes connected by general network and communication assists.
— Implementations also conver ging, at least in high-end machines.

'EECC756 - Shaaban ]—

#7 lec#2 Spring 2002 3-14-2002




Convergence of Scalable Parallel M achines:
Generic Parallel Architecture

e A generic modern multiprocessor:

< Network >

O o0 O

Communication
Mem | assist (CA)
[

Node: processor (s), memory system, plus communication assist:
* Network interface and communication controller.
« Scalable network:
« Convergence allowslots of innovation, now within framework
* Integration of assist with node, what oper ations, how efficiently...

'EECC756 - Shaaban ]—

#8 lec#2 Spring 2002 3-14-2002




Understanding Parallel Architecture

Traditional taxonomies not very useful.

Programming models are not enough, nor hardware
structures.

— Can be supported by radically different ar chitectures.
Architectural distinctions that affect software

— Compilers, libraries, programs.

Design of user/system and hardwar e/softwar e interface

— Constrained from above by programming models and below
by technology.

Guiding principles provided by layers.
— What primitives are provided at communication abstraction.
— How programming models map to these.
— How they are mapped to hardware.

'EECC756 - Shaaban ]—

#9 lec#2 Spring 2002 3-14-2002




Fundamental Design | ssues

« At any layer, interface (contract) aspect and performance
aspects:
— Naming: How arelogically shared data and/or processes
referenced?

— Operations: What operations are provided on these data.
— Ordering: How are accessesto data ordered and
coordinated to satisfy program threads dependencies?

— Replication: How aredatareplicated to reduce
communication over heads?

— Communication Cost: Latency, bandwidth, overhead,
occupancy.
e Understand at programming model level first, since that

setsrequirementsfrom lower layers.
e Other issues:
— Node Granularity: How to split between processors and memory?

- 'EECC756 - Shasban

#10 lec#2 Spring 2002 3-14-2002



Sequential Programming M odel

Contract

— Naming: Can name any variablein virtual address space

e Hardware (and perhaps compilers) doestrandation to physical
addr esses.

— Operations: Loadsand Stores.
— Ordering: Sequential program order.

Perfor mance

— Rely on dependencies on single location (mostly): dependence
order.

— Compilersand hardware violate other orderswithout getting
caugnht.

— Compiler: reordering and register allocation
— Hardware: out of order, pipeline bypassing, write buffers
— Transparent replication in caches

'EECC756 - Shaaban ]—

#11 lec#2 Spring 2002 3-14-2002



SAS Programming M odé€l

Naming: Any processcan hame any variablein shared
space.

Operations. loadsand stores, plusthose needed for
ordering and thread synchronization.

Simplest Ordering M ode!:

— Within a process/thread: sequential program order.
— Acrossthreads: someinterleaving (asin time-sharing).
— Additional ordersthrough synchronization.

— Again, compiler s/hardwar e can violate order s without
getting caught.

— Different, more subtle ordering models also possible.

| EECC756 - Shaaban

#12 lec#2 Spring 2002 3-14-2002



Synchronization

Mutual exclusion (locks):

— Ensure certain operations on certain data can be
performed by only one process at atime.

— Room that only one person can enter at atime.
— No ordering guarantees.

Event synchronization:
— Ordering of eventsto preserve dependences
e eg. producer —> consumer of data
— 3 main types.
e point-to-point
 global
e group

| EECC756 - Shaaban

#13 lec#2 Spring 2002 3-14-2002



M essage Passing Programming M odel

Naming: Processes can name private data directly.

— No shared address space.
Operations. Explicit communication through send and receive

— Send transfersdata from private address space to another process.
— Recelve copies data from processto private addr ess space.
— Must be able to name processes.

Ordering:

— Program order within a process.

— Blocking send and receive can provide point to point
synchronization between processes.

— Mutual exclusion inherent.

Can construct global address space:
— Process number + addresswithin process addr ess space

— But no direct operations on these names at the communication
abstraction level.

| EECC756 - Shaaban

#14 lec#2 Spring 2002 3-14-2002



Design Issues Apply at All Layers

Prog. model’ s position provides constraints/goalsfor the system.

In fact, each interface between layers supports or takes a position
on:

— Naming mode!.

— Set of operations on names

— Ordering model.

— Replication.

— Communication performance.

Any set of positions can be mapped to any other by software.

L et’s seeissues across layers:

— How lower layers can support contracts of programming
models.

— Performanceissues.

| EECC756 - Shaaban

#15 lec#2 Spring 2002 3-14-2002



L ower Layers Support of Naming and Oper ations

 Naming and operationsin programming model can be directly
supported by lower levels, or translated by compiler, librariesor OS

Example: Shared virtual address space in programming model
« Hardwareinterface supports shared physical address space

— Direct support by hardware through virtual-to-physical
mappings, no softwar e layers.

« Hardware supportsindependent physical address spaces.
— Can provide SASthrough OS, in system/user interface
 v-to-p mappingsonly for datathat arelocal.

 Remote data accessesincur page faults; brought in via page
fault handlers.

e Same programming model, different hardwar e requirements
and cost model.

— Or through compilersor runtime, so above sys/user interface
 shared objects, instrumentation of shared accesses, compiler

support.
'EECC756 - Shaaban ]—

#16 lec#2 Spring 2002 3-14-2002




L ower Layers Support of Naming and Oper ations

Example: Implementing M essage Passing
* Direct support at hardwar e interface:

— But message matching and buffering benefit from the added
flexibility provided by software.

e Support at sysuser interface or above in software (almost always)
— Hardwareinterface provides basic data transport (well suited).
— Send/receive built in sw for flexibility (protection, buffering).

— Choices at user/system interface:
 All messages go through OSeach time: expensive
o OSsatsup oncelinfrequently, then little softwar e involvement
each timefor smple data transfer operations.
— Or lower interfaces provide SAS, and send/receive built on top
with buffersand loads/stores.
 Need to examinetheissues and tradeoffs at every layer

— Frequencies and types of operations, costs.

'EECC756 - Shaaban ]—

#17 lec#2 Spring 2002 3-14-2002




Lower Layers Support of Ordering

M essage passing: No assumptions on orders across
processes except those imposed by send/receive pairs.

SAS. How processes seethe order of other processes
refer ences defines semantics of SAS:

Ordering isvery important and subtle.

Uniprocessors play trickswith ordersto gain parallelism
or locality.

These are more important in multiprocessors.

Need to under stand which old tricksare valid, and learn
new ones.

How programs behave, what they rely on, and hardware
implications.

| EECC756 - Shaaban

#18 lec#2 Spring 2002 3-14-2002



L ower Layers Support of Replication

Very important for reducing data transfer/communication.
Again, depends on naming mode!.

Uniprocessor: cachesdo it automatically
— Reduce communication with memory.

M essage Passing naming model at an interface:
— A recelvereplicates, giving a new name; subsequently use new name.
— Replication isexplicit in softwar e above that interface

SAS naming model at an interface

— Aload bringsin data transparently, so can replicate transpar ently
— Hardware cachesdo this, e.g. in shared physical address space

— OScandoit at pagelevel in shared virtual address space, or objects

— No explicit renaming, many copiesfor same name: coherence problem

e In uniprocessors “coherence’ of copiesisnatural in memory
hierarchy.

'EECC756 - Shaaban ]—

#19 lec#2 Spring 2002 3-14-2002




Communication Performance

Perfor mance char acteristics deter mine usage of operations
at alayer:

— Programmer, compilers etc. make choices based on this
Fundamentally, three characteristics:.

— Latency: timetaken for an operation.

— Bandwidth: rate of performing operations.

— Cost: impact on execution time of program.

|f processor doesonething at atime: bandwidth p
1/latency

— But actually more complex in modern systems.

Characteristics apply to overall operations, aswell as
Individual components of a system, however small

We'll focus on communication or data transfer acr oss
nodes.

| EECC756 - Shaaban

#20 lec#2 Spring 2002 3-14-2002



Simple Communication Cost Example

o Component performsan operation in 100ns.
o Simplebandwidth: 10 M operations

e Internally pipelinedepth 10 => bandwidth 100 M ops
— Rate deter mined by slowest stage of pipeline, not overall latency.

* Dédlivered bandwidth on application depends on initiation
frequency.
* Suppose application performs 100 M operations. What is
cost?
— op count * op latency gives 10 sec (upper bound)

— op count / peak op rate gives 1 sec (lower bound)

o assumesfull overlap of latency with useful work, sojust issue
cost

— 1f application can do 50 ns of useful work before depending
on result of op, cost to application isthe other 50ns of latency

'EECC756 - Shaaban ]—

#21 lec#2 Spring 2002 3-14-2002




Linear Model of Data Transfer L atency

Transfer time (n) =T, + n/B
T,=Start-upcost B =Transfer rate n= Amount of data

o useful for message passing, memory access, Vector ops
etc.

* Asn increases, bandwidth approaches asymptotic rate B

 How quickly it approachesdependson T,

o Sizeneeded for half bandwidth (half-power point):
n,=T,/B

e But thelinear model is not enough:

— When can next transfer beinitiated? Can cost be
overlapped?

— Need to know how the transfer is performed.

| EECC756 - Shaaban

#22 lec#2 Spring 2002 3-14-2002



Communication Cost M ode

Comm Time per message(n) = Overhead + Occupancy + Network Delay
= Overhead + Occupancy + Network Latency + Size/Bandwidth +
Contention

= o0, + 0.+ 1+ n/B + T,

Overhead = Timefor the processor toinitiatethetransfer.

Occupancy = Thetimeit takes data to passthrough the slowest component on
the communication path. Limitsfrequency of communication
oper ations.

| +n/B + T, = Total Network Delay, can be hidden by overlapping with other
processor oper ations.

 Overhead and assist occupancy may bef(n) or not.

« Each component along the way has occupancy and delay
— Overall delay issum of delays.
— Overall occupancy (1/bandwidth) is biggest of occupancies

| EECC756 - Shaaban

#23 lec#2 Spring 2002 3-14-2002



Communication Cost M ode

Comm Cost = frequency * (Comm time - overlap)

Frequency of Communication:

— Thenumber of communication operations per unit of work in the
program.

— Depends on many program and hardware factors.
 Hardware may limit transfer size increasing comm. Freguency.
— Also affected by degree of hardware data replication and migration.

The Overlap:

— Theportion of the communication operation time performed

concurrently with other useful work including computation and other
useful work.

— Reduction of effective communication cost is possible because much of

the communication work is done by components other than the
processor including:

 Communication assist, bus, the network, remote processor or

memory.
| EECC756 - Shaaban

#24 lec#2 Spring 2002 3-14-2002



Summary of Design | ssues

Functional and performanceissues apply at all layers

Functional: Naming, operations and ordering.

Performance: Organization, latency, bandwidth,

over head, occupancy.

Replication and communication are deeply related:
— Management depends on naming model.

Goal of architects. design against frequency and type of
operationsthat occur at communication abstraction,
constrained by tradeoffs from above or below.

— Hardwar e/softwar e tr adeoffs.

| EECC756 - Shaaban

#25 lec#2 Spring 2002 3-14-2002



