
EECC756 - Shaaban
#1 lec # 2 Spring 2002 3-14-2002

Parallel Architectures HistoryParallel Architectures History

Application Software

System
 Software SIMD

Message Passing

Shared MemoryDataflow

Systolic
Arrays Architecture

Historically, parallel architectures tied to programming models

• Divergent architectures, with no predictable pattern of growth.

EECC756 - Shaaban
#2 lec # 2 Spring 2002 3-14-2002

Current Trends In Current Trends In Parallel ArchitecturesParallel Architectures

• The extension of “computer architecture” to support
communication and cooperation:

– OLD: Instruction Set Architecture.

– NEW: Communication Architecture.

• Defines:
– Critical abstractions, boundaries, and primitives

(interfaces).

– Organizational structures that implement interfaces
(hardware or software).

• Compilers, libraries and OS are important bridges today

EECC756 - Shaaban
#3 lec # 2 Spring 2002 3-14-2002

Modern Parallel ArchitectureModern Parallel Architecture
Layered FrameworkLayered Framework

CAD

Multiprogramming Shared
address

Message
passing

Data
parallel

Database Scientific modeling Parallel applications

Programming models

Communication abstraction
User/system boundary

Compilation
or library

Operating systems support

Communication hardware

Physical communication medium

Hardware/software boundary

EECC756 - Shaaban
#4 lec # 2 Spring 2002 3-14-2002

Programming ModelsProgramming Models
• Programming methodology used in coding applications
• Specifies communication and synchronization

• Examples:

– Multiprogramming:

 No communication or synchronization at program level

– Shared memory address space:

– Message passing:

 Explicit point to point communication

– Data parallel:

 More regimented, global actions on data
• Implemented with shared address space or message passing

EECC756 - Shaaban
#5 lec # 2 Spring 2002 3-14-2002

Communication AbstractionCommunication Abstraction
• User-level communication primitives provided

– Realizes the programming model.
– Mapping exists between language primitives of programming model

and these primitives

• Supported directly by hardware, or via OS, or via user software.

• Lot of debate about what to support in software and gap between
layers.

• Today:
– Hardware/software interface tends to be flat, i.e. complexity roughly

uniform.

– Compilers and software play important roles as bridges today.
– Technology trends exert strong influence

• Result is convergence in organizational structure
– Relatively simple, general purpose communication primitives.

EECC756 - Shaaban
#6 lec # 2 Spring 2002 3-14-2002

Communication ArchitectureCommunication Architecture
 = User/System Interface + Implementation
• User/System Interface:

– Communication primitives exposed to user-level by hardware and
system-level software.

• Implementation:
– Organizational structures that implement the primitives: hardware

or OS.
– How optimized are they? How integrated into processing node?
– Structure of network.

• Goals:
– Performance
– Broad applicability
– Programmability
– Scalability
– Low Cost

EECC756 - Shaaban
#7 lec # 2 Spring 2002 3-14-2002

Toward Architectural ConvergenceToward Architectural Convergence
• Evolution and role of software have blurred boundary:

– Send/receive supported on SAS machines via buffers.
– Can construct global address space on massively parallel (MP) message-passing

machines by carrying along pointers specifying the process and local virtual
address space.

– Shared virtual address space in message-passing machines can also be
established at the page level generating a page fault for remote pages handled
by sending a message.

• Hardware organization converging too:
– Tighter integration even for MP (low-latency, high-bandwidth):

• Network interface tightly integrated with memory/cache controller.
• Transfer data directly to/from user address space.
• DMA transfers across the network.

– At lower level, even hardware SAS passes hardware messages.

• Even clusters of workstations/SMPs are becoming parallel systems:
– Emergence of fast system area networks (SAN): ATM, fiber channel ...

• Programming models distinct, but organizations converging:
– Nodes connected by general network and communication assists.
– Implementations also converging, at least in high-end machines.

EECC756 - Shaaban
#8 lec # 2 Spring 2002 3-14-2002

Convergence of Scalable Parallel Machines:Convergence of Scalable Parallel Machines:

 Generic Parallel ArchitectureGeneric Parallel Architecture
• A generic modern multiprocessor:

Node: processor(s), memory system, plus communication assist:

• Network interface and communication controller.
• Scalable network:

• Convergence allows lots of innovation, now within framework
• Integration of assist with node, what operations, how efficiently...

Mem

° ° °

Network

P

$

Communication
assist (CA)

EECC756 - Shaaban
#9 lec # 2 Spring 2002 3-14-2002

Understanding Parallel ArchitectureUnderstanding Parallel Architecture
• Traditional taxonomies not very useful.
• Programming models are not enough, nor hardware

structures.
– Can be supported by radically different architectures.

• Architectural distinctions that affect software
– Compilers, libraries, programs.

• Design of user/system and hardware/software interface
– Constrained from above by programming models and below

by technology.

• Guiding principles provided by layers.
– What primitives are provided at communication abstraction.

– How programming models map to these.

– How they are mapped to hardware.

EECC756 - Shaaban
#10 lec # 2 Spring 2002 3-14-2002

Fundamental Design IssuesFundamental Design Issues
• At any layer, interface (contract) aspect and performance

aspects:
– Naming: How are logically shared data and/or processes

referenced?
– Operations: What operations are provided on these data.
– Ordering: How are accesses to data ordered and

coordinated to satisfy program threads dependencies?
– Replication: How are data replicated to reduce

communication overheads?
– Communication Cost: Latency, bandwidth, overhead,

occupancy.
• Understand at programming model level first, since that

sets requirements from lower layers.
• Other issues:

– Node Granularity: How to split between processors and memory?
– ...

EECC756 - Shaaban
#11 lec # 2 Spring 2002 3-14-2002

Sequential Programming ModelSequential Programming Model
Contract

– Naming: Can name any variable in virtual address space
• Hardware (and perhaps compilers) does translation to physical

addresses.

– Operations: Loads and Stores.

– Ordering: Sequential program order.

Performance
– Rely on dependencies on single location (mostly): dependence

order.

– Compilers and hardware violate other orders without getting
caught.

– Compiler: reordering and register allocation

– Hardware: out of order, pipeline bypassing, write buffers

– Transparent replication in caches

EECC756 - Shaaban
#12 lec # 2 Spring 2002 3-14-2002

SAS Programming ModelSAS Programming Model
• Naming: Any process can name any variable in shared

space.

• Operations: loads and stores, plus those needed for
ordering and thread synchronization.

• Simplest Ordering Model:
– Within a process/thread: sequential program order.

– Across threads: some interleaving (as in time-sharing).

– Additional orders through synchronization.

– Again, compilers/hardware can violate orders without
getting caught.

– Different, more subtle ordering models also possible.

EECC756 - Shaaban
#13 lec # 2 Spring 2002 3-14-2002

SynchronizationSynchronization
Mutual exclusion (locks):

– Ensure certain operations on certain data can be
performed by only one process at a time.

– Room that only one person can enter at a time.

– No ordering guarantees.

Event synchronization:
– Ordering of events to preserve dependences

• e.g. producer —> consumer of data

– 3 main types:
• point-to-point

• global
• group

EECC756 - Shaaban
#14 lec # 2 Spring 2002 3-14-2002

Message Passing Programming ModelMessage Passing Programming Model
• Naming: Processes can name private data directly.

– No shared address space.

• Operations: Explicit communication through send and receive

– Send transfers data from private address space to another process.
– Receive copies data from process to private address space.
– Must be able to name processes.

• Ordering:

– Program order within a process.
– Blocking send and receive can provide point to point

synchronization between processes.
– Mutual exclusion inherent.

• Can construct global address space:
– Process number + address within process address space
– But no direct operations on these names at the communication

abstraction level.

EECC756 - Shaaban
#15 lec # 2 Spring 2002 3-14-2002

Design Issues Apply at All LayersDesign Issues Apply at All Layers
• Prog. model’s position provides constraints/goals for the system.

• In fact, each interface between layers supports or takes a position
on:
– Naming model.

– Set of operations on names

– Ordering model.

– Replication.

– Communication performance.

• Any set of positions can be mapped to any other by software.

• Let’s see issues across layers:

– How lower layers can support contracts of programming
models.

– Performance issues.

EECC756 - Shaaban
#16 lec # 2 Spring 2002 3-14-2002

Lower Layers Support of Lower Layers Support of Naming and OperationsNaming and Operations
• Naming and operations in programming model can be directly

supported by lower levels, or translated by compiler, libraries or OS
Example: Shared virtual address space in programming model
• Hardware interface supports shared physical address space

– Direct support by hardware through virtual-to-physical
mappings, no software layers.

• Hardware supports independent physical address spaces:

– Can provide SAS through OS, in system/user interface
• v-to-p mappings only for data that are local.
• Remote data accesses incur page faults; brought in via page

fault handlers.
• Same programming model, different hardware requirements

and cost model.

– Or through compilers or runtime, so above sys/user interface
• shared objects, instrumentation of shared accesses, compiler

support.

EECC756 - Shaaban
#17 lec # 2 Spring 2002 3-14-2002

Example: Implementing Message Passing
• Direct support at hardware interface:

– But message matching and buffering benefit from the added
flexibility provided by software.

• Support at sys/user interface or above in software (almost always)

– Hardware interface provides basic data transport (well suited).
– Send/receive built in sw for flexibility (protection, buffering).
– Choices at user/system interface:

• All messages go through OS each time: expensive
• OS sets up once/infrequently, then little software involvement

each time for simple data transfer operations.

– Or lower interfaces provide SAS, and send/receive built on top
with buffers and loads/stores.

• Need to examine the issues and tradeoffs at every layer
– Frequencies and types of operations, costs.

Lower Layers Support of Lower Layers Support of Naming and OperationsNaming and Operations

EECC756 - Shaaban
#18 lec # 2 Spring 2002 3-14-2002

Lower Layers Support of Lower Layers Support of OrderingOrdering
• Message passing: No assumptions on orders across

processes except those imposed by send/receive pairs.

• SAS: How processes see the order of other processes’
references defines semantics of SAS:
– Ordering is very important and subtle.

– Uniprocessors play tricks with orders to gain parallelism
or locality.

– These are more important in multiprocessors.

– Need to understand which old tricks are valid, and learn
new ones.

– How programs behave, what they rely on, and hardware
implications.

EECC756 - Shaaban
#19 lec # 2 Spring 2002 3-14-2002

Lower Layers Support of Lower Layers Support of ReplicationReplication
• Very important for reducing data transfer/communication.
• Again, depends on naming model.
• Uniprocessor: caches do it automatically

– Reduce communication with memory.

• Message Passing naming model at an interface:
– A receive replicates, giving a new name; subsequently use new name.

– Replication is explicit in software above that interface

• SAS naming model at an interface
– A load brings in data transparently, so can replicate transparently

– Hardware caches do this, e.g. in shared physical address space
– OS can do it at page level in shared virtual address space, or objects

– No explicit renaming, many copies for same name: coherence problem

• In uniprocessors, “coherence” of copies is natural in memory
hierarchy.

EECC756 - Shaaban
#20 lec # 2 Spring 2002 3-14-2002

Communication PerformanceCommunication Performance
• Performance characteristics determine usage of operations

at a layer:
– Programmer, compilers etc. make choices based on this

• Fundamentally, three characteristics:
– Latency: time taken for an operation.

– Bandwidth: rate of performing operations.

– Cost: impact on execution time of program.

• If processor does one thing at a time: bandwidth ∝∝
1/latency
– But actually more complex in modern systems.

• Characteristics apply to overall operations, as well as
individual components of a system, however small

• We’ll focus on communication or data transfer across
nodes.

EECC756 - Shaaban
#21 lec # 2 Spring 2002 3-14-2002

Simple Communication Cost ExampleSimple Communication Cost Example
• Component performs an operation in 100ns.
• Simple bandwidth: 10 M operations
• Internally pipeline depth 10 => bandwidth 100 Mops

– Rate determined by slowest stage of pipeline, not overall latency.

• Delivered bandwidth on application depends on initiation
frequency.

• Suppose application performs 100 M operations. What is
cost?
– op count * op latency gives 10 sec (upper bound)

– op count / peak op rate gives 1 sec (lower bound)
• assumes full overlap of latency with useful work, so just issue

cost

– if application can do 50 ns of useful work before depending
on result of op, cost to application is the other 50ns of latency

EECC756 - Shaaban
#22 lec # 2 Spring 2002 3-14-2002

Linear Model of Data Transfer LatencyLinear Model of Data Transfer Latency
 Transfer time (n) = T0 + n/B
 T0 = Start-up cost B = Transfer rate n = Amount of data

• useful for message passing, memory access, vector ops
etc.

• As n increases, bandwidth approaches asymptotic rate B
• How quickly it approaches depends on T0

• Size needed for half bandwidth (half-power point):
 n1/2 = T0 / B

• But the linear model is not enough:
– When can next transfer be initiated? Can cost be

overlapped?

– Need to know how the transfer is performed.

EECC756 - Shaaban
#23 lec # 2 Spring 2002 3-14-2002

Communication Cost ModelCommunication Cost Model
Comm Time per message(n) = Overhead + Occupancy + Network Delay

 = Overhead + Occupancy + Network Latency + Size/Bandwidth +
 Contention

 = ov + oc + l + n/B + Tc

Overhead = Time for the processor to initiate the transfer.
Occupancy = The time it takes data to pass through the slowest component on
 the communication path. Limits frequency of communication
 operations.
l + n/B + Tc = Total Network Delay, can be hidden by overlapping with other
 processor operations.

• Overhead and assist occupancy may be f(n) or not.
• Each component along the way has occupancy and delay

– Overall delay is sum of delays.

– Overall occupancy (1/bandwidth) is biggest of occupancies

EECC756 - Shaaban
#24 lec # 2 Spring 2002 3-14-2002

Communication Cost ModelCommunication Cost Model
 Comm Cost = frequency * (Comm time - overlap)
Frequency of Communication:

– The number of communication operations per unit of work in the
program.

– Depends on many program and hardware factors.

• Hardware may limit transfer size increasing comm. Frequency.

– Also affected by degree of hardware data replication and migration.

The Overlap:

– The portion of the communication operation time performed
concurrently with other useful work including computation and other
useful work.

– Reduction of effective communication cost is possible because much of
the communication work is done by components other than the
processor including:

• Communication assist, bus, the network, remote processor or
memory.

EECC756 - Shaaban
#25 lec # 2 Spring 2002 3-14-2002

Summary of Design IssuesSummary of Design Issues
• Functional and performance issues apply at all layers

• Functional: Naming, operations and ordering.

• Performance: Organization, latency, bandwidth,
overhead, occupancy.

• Replication and communication are deeply related:
– Management depends on naming model.

• Goal of architects: design against frequency and type of
operations that occur at communication abstraction,
constrained by tradeoffs from above or below.

– Hardware/software tradeoffs.

