
1

Parallelization of An Example Program

Examine a simplified version of a piece of Ocean simulation

• Iterative equation solver

Illustrate parallel program in low-level parallel language

• C-like pseudocode with simple extensions for parallelism

• Expose basic communication and synch. primitives that must be supported

2

Grid Solver Example

• Simplified version of solver in Ocean simulation

• Gauss-Seidel (near-neighbor) sweeps to convergence
– interior n-by-n points of (n+2)-by-(n+2) updated in each sweep
– updates done in-place in grid, and diff. from prev. value computed
– accumulate partial diffs into global diff at end of every sweep
– check if error has converged (to within a tolerance parameter)
– if so, exit solver; if not, do another sweep

A[i,j] = 0.2 × (A[i,j] + A[i,j – 1] + A[i – 1, j] +

A[i,j + 1] + A[i + 1, j])

Expression for updating each interior point:

3

1. int n; /*size of matrix: (n + 2-by-n + 2) elements*/
2. float **A, diff = 0;

3. main()
4. begin
5. read(n) ; /*read input parameter: matrix size*/
6. A ← malloc (a 2-d array of size n + 2 by n + 2 doubles);

7. initialize(A); /*initialize the matrix A somehow*/
8. Solve (A); /*call the routine to solve equation*/
9. end main

10. procedure Solve (A) /*solve the equation system*/
11. float **A; /*A is an (n + 2)-by-(n + 2) array*/
12. begin
13. int i, j, done = 0;

14. float diff = 0, temp;

15. while (!done) do /*outermost loop over sweeps*/
16. diff = 0; /*initialize maximum difference to 0*/
17. for i ← 1 to n do /*sweep over nonborder points of grid*/
18. for j ← 1 to n do

19. temp = A[i,j]; /*save old value of element*/
20. A[i,j] ← 0.2 * (A[i,j] + A[i,j-1] + A[i-1,j] +

21. A[i,j+1] + A[i+1,j]); /*compute average*/
22. diff += abs(A[i,j] - temp);

23. end for

24. end for

25. if (diff/(n*n) < TOL) then done = 1;

26. end while

27. end procedure

4

Decomposition

• Concurrency O(n) along anti-diagonals, serialization O(n) along diag.
• Retain loop structure, use pt-to-pt synch; Problem: too many synch ops.
• Restructure loops, use global synch; imbalance and too much synch

•Simple way to identify concurrency is to look at loop iterations

–dependence analysis; if not enough concurrency, then look further

•Not much concurrency here at this level (all loops sequential)

•Examine fundamental dependences, ignoring loop structure

5

Exploit Application Knowledge

• Different ordering of updates: may converge quicker or slower

• Red sweep and black sweep are each fully parallel:
• Global synch between them (conservative but convenient)
• Ocean uses red-black; we use simpler, asynchronous one to illustrate

– no red-black, simply ignore dependences within sweep
– sequential order same as original, parallel program nondeterministic

Red point

Black point

•Reorder grid traversal: red-black ordering

6

Decomposition Only

• Decomposition into elements: degree of concurrency n2

• To decompose into rows, make line 18 loop sequential; degree n

•for_all leaves assignment left to system

– but implicit global synch. at end of for_all loop

15. while (!done) do /*a sequential loop*/
16. diff = 0;
17. for_all i ← 1 to n do /*a parallel loop nest*/
18. for_all j ← 1 to n do
19. temp = A[i,j];
20. A[i,j] ← 0.2 * (A[i,j] + A[i,j-1] + A[i-1,j] +
21. A[i,j+1] + A[i+1,j]);
22. diff += abs(A[i,j] - temp);
23. end for_all
24. end for_all
25. if (diff/(n*n) < TOL) then done = 1;
26. end while

7

Assignment

• Dynamic assignment

– get a row index, work on the row, get a new row, and so on

• Static assignment into rows reduces concurrency (from n to p)
– block assign. reduces communication by keeping adjacent rows together

• Let’s dig into orchestration under three programming models

i
p

P0

P1

P2

P4

•Static assignments (given decomposition into rows)
–block assignment of rows: Row i is assigned to process
–cyclic assignment of rows: process i is assigned rows i, i+p, and so on

8

Data Parallel Solver
1. int n, nprocs; /*grid size (n + 2-by-n + 2) and number of processes*/
2. float **A, diff = 0;

3. main()
4. begin
5. read(n); read(nprocs); ; /*read input grid size and number of processes*/
6. A ← G_MALLOC (a 2-d array of size n+2 by n+2 doubles);
7. initialize(A); /*initialize the matrix A somehow*/
8. Solve (A); /*call the routine to solve equation*/
9. end main

10. procedure Solve(A) /*solve the equation system*/
11. float **A; /*A is an (n + 2-by-n + 2) array*/
12. begin
13. int i, j, done = 0;
14. float mydiff = 0, temp;
14a. DECOMP A[BLOCK,*, nprocs];
15. while (!done) do /*outermost loop over sweeps*/
16. mydiff = 0; /*initialize maximum difference to 0*/
17. for_all i ← 1 to n do /*sweep over non-border points of grid*/
18. for_all j ← 1 to n do
19. temp = A[i,j]; /*save old value of element*/
20. A[i,j] ← 0.2 * (A[i,j] + A[i,j-1] + A[i-1,j] +
21. A[i,j+1] + A[i+1,j]); /*compute average*/
22. mydiff += abs(A[i,j] - temp);
23. end for_all
24. end for_all
24a. REDUCE (mydiff, diff, ADD);
25. if (diff/(n*n) < TOL) then done = 1;
26. end while
27. end procedure

9

Shared Address Space Solver

• Assignment controlled by values of variables used as loop bounds

Single Program Multiple Data (SPMD)

Sweep

Test Convergence

Processes

Solve Solve Solve Solve

10

1. int n, n p r o c s ; /*matrix dimension and number of processors to be used*/
2a. float **A, diff; /*A is global (shared) array representing the grid*/

/*diff is global (shared) maximum difference in current
sweep*/

2b. L O C K D E C (d i f f _ l o c k) ; /*declaration of lock to enforce mutual exclusion*/
2c. BARDEC (bar1); /*barrier declaration for global synchronization between

sweeps*/

3. main()
4. begin
5. read(n); read(n p r o c s); /*read input matrix size and number of processes*/
6. A ← G _ M A L L O C (a two-dimensional array of size n+2 by n+2 doubles);
7. initialize(A); /*initialize A in an unspecified way*/
8a. CREATE (nprocs–1, Solve, A);
8. Solve(A); /*main process becomes a worker too*/
8b. W A I T _ F O R _ E N D (n p r o c s – 1) ; /*wait for all child processes created to terminate*/
9. end main

10. procedure Solve(A)
11. float **A; /*A is entire n+2-by-n+2 shared array,

as in the sequential program*/
12. begin
13. int i,j, p i d, done = 0;
14. float temp, m y d i f f = 0; /*private variables*/
14a. int mymin = 1 + (pid * n/nprocs); /*assume that n is exactly divisible by*/
14b. int mymax = mymin + n/nprocs - 1 /*nprocs for simplicity here*/

15. while (!done) do /*outer loop over all diagonal elements*/
16. m y d i f f = diff = 0; /*set global diff to 0 (okay for all to do it)*/
16a. B A R R I E R (b a r 1 , n p r o c s) ; /*ensure all reach here before anyone modifies diff*/
17. for i ← mymin to mymax do /*for each of my rows*/
18. for j ← 1 to n do /*for all nonborder elements in that row*/
19. temp = A[i,j];
20. A[i,j] = 0.2 * (A[i,j] + A[i,j-1] + A[i-1,j] +
21. A[i,j+1] + A[i+1,j]);
22. m y d i f f += abs(A[i,j] - temp);
23. endfor
24. endfor
25a. L O C K (d i f f _ l o c k) ; /*update global diff if necessary*/
25b. diff += m y d i f f;
25c. U N L O C K (d i f f _ l o c k) ;
25d. B A R R I E R (b a r 1 , n p r o c s) ; /*ensure all reach here before checking if done*/
25e. if (diff/(n*n) < TOL) then done = 1; /*check convergence; all get

same answer*/
25f. B A R R I E R (b a r 1 , n p r o c s) ;
26. endwhile
27. end procedure

11

Notes on SAS Program

• SPMD: not lockstep or even necessarily same instructions

• Assignment controlled by values of variables used as loop bounds

– unique pid per process, used to control assignment

• Done condition evaluated redundantly by all

• Code that does the update identical to sequential program

– each process has private mydiff variable

• Most interesting special operations are for synchronization

– accumulations into shared diff have to be mutually exclusive

– why the need for all the barriers?

12

Need for Mutual Exclusion
• Code each process executes:

load the value of diff into register r1

add the register r2 to register r1
store the value of register r1 into diff

• A possible interleaving:

P1 P2

r1 ← diff {P1 gets 0 in its r1}
r1 ← diff {P2 also gets 0}

r1 ← r1+r2 {P1 sets its r1 to 1}
r1 ← r1+r2 {P2 sets its r1 to 1}

diff ← r1 {P1 sets cell_cost to 1}
diff ← r1 {P2 also sets cell_cost to 1}

• Need the sets of operations to be atomic (mutually exclusive)

13

Mutual Exclusion

Provided by LOCK-UNLOCK around critical section

• Set of operations we want to execute atomically

• Implementation of LOCK/UNLOCK must guarantee mutual excl.

Can lead to significant serialization if contended

• Especially since expect non-local accesses in critical section

• Another reason to use private mydiff for partial accumulation

14

Global Event Synchronization

BARRIER(nprocs): wait here till nprocs processes get here
• Built using lower level primitives
• Global sum example: wait for all to accumulate before using sum
• Often used to separate phases of computation

Process P_1 Process P_2 Process P_nprocs

set up eqn system set up eqn system set up eqn system

Barrier (name, nprocs) Barrier (name, nprocs) Barrier (name, nprocs)

solve eqn system solve eqn system solve eqn system

Barrier (name, nprocs) Barrier (name, nprocs) Barrier (name, nprocs)

apply results apply results apply results

Barrier (name, nprocs) Barrier (name, nprocs) Barrier (name, nprocs)

• Conservative form of preserving dependences, but easy to use

WAIT_FOR_END (nprocs-1)

15

Pointt-to-point Event Synch
(Not Used Here)

One process notifies another of an event so it can proceed

• Common example: producer-consumer (bounded buffer)

• Concurrent programming on uniprocessor: semaphores

• Shared address space parallel programs: semaphores, or use ordinary variables as
flags

•Busy-waiting or spinning

P1 P2

A = 1;

a: while (flag is 0) do nothing;
b: flag
= 1;

print A;

16

Group Event Synchronization

Subset of processes involved

• Can use flags or barriers (involving only the subset)

• Concept of producers and consumers

Major types:

• Single-producer, multiple-consumer

• Multiple-producer, single-consumer

• Multiple-producer, single-consumer

17

Message Passing Grid Solver

• Cannot declare A to be shared array any more

• Need to compose it logically from per-process private arrays

– usually allocated in accordance with the assignment of work

– process assigned a set of rows allocates them locally

• Transfers of entire rows between traversals

• Structurally similar to SAS (e.g. SPMD), but orchestration different

– data structures and data access/naming

– communication

– synchronization

18

1. int p i d, n, b; /*process id, matrix dimension and number of
processors to be used*/

2. float * * m y A ;
3. main()
4. begin
5. read(n); read(n p r o c s); /*read input matrix size and number of processes*/
8a. C R E A T E (n p r o c s - 1 , S o l v e) ;

8b. Solve(); /*main process becomes a worker too*/
8c. W A I T _ F O R _ E N D (n p r o c s – 1) ; /*wait for all child processes created to terminate*/
9. end main

10. procedure Solve()
11. begin
13. int i,j, p i d, n ’ = n / n p r o c s , done = 0;
14. float temp, t e m p d i f f , m y d i f f = 0; /*private variables*/
6. m y A ← malloc(a 2-d array of size [n/nprocs + 2] by n+2);

/*my assigned rows of A*/
7. initialize(m y A); /*initialize my rows of A, in an unspecified way*/

15. while (!done) do
16. m y d i f f = 0; /*set local diff to 0*/
16a. if (pid != 0) then S E N D(&m y A[1,0],n*sizeof(float),pid-1,R O W);
16b. if (pid = nprocs-1) then

S E N D(&m y A[n’,0],n*sizeof(float),pid+1,R O W);
16c. if (pid != 0) then R E C E I V E(&m y A[0,0],n*sizeof(float),pid-1,R O W);
16d. if (pid != nprocs-1) then

R E C E I V E(&m y A[n’+1,0],n*sizeof(float), pid+1,R O W);

/*border rows of neighbors have now been copied
into myA[0,*] and myA[n’+1,*]*/

17. for i ← 1 to n’ do /*for each of my (nonghost) rows*/
18. for j ← 1 to n do /*for all nonborder elements in that row*/
19. temp = m y A[i,j];
20. m y A[i,j] = 0.2 * (m y A[i,j] + m y A[i,j-1] + m y A[i-1,j] +
21. m y A[i,j+1] + m y A[i+1,j]);
22. m y d i f f += abs(m y A[i,j] - temp);
23. endfor
24. endfor

/*communicate local diff values and determine if
done; can be replaced by reduction and broadcast*/

25a. if (pid != 0) then /*process 0 holds global total diff*/
25b. S E N D(mydiff,sizeof(float),0,D I F F);
25c. R E C E I V E(done,sizeof(int),0,D O N E);
25d. else /*pid 0 does this*/
25e. for i ← 1 to nprocs-1 do /*for each other process*/
25f. R E C E I V E(tempdiff,sizeof(float),*,D I F F);
25g. m y d i f f += tempdiff; /*accumulate into total*/
25h. endfor
25i if (mydiff/(n*n) < TOL) then done = 1;
25j. for i ← 1 to nprocs-1 do /*for each other process*/
25k. S E N D(done,sizeof(int),i,D O N E);
25l. endfor
25m. endif
26. endwhile
27. end procedure

19

Notes on Message Passing Program
• Use of ghost rows

• Receive does not transfer data, send does

– unlike SAS which is usually receiver-initiated (load fetches data)

• Communication done at beginning of iteration, so no asynchrony

• Communication in whole rows, not element at a time

• Core similar, but indices/bounds in local rather than global space

• Synchronization through sends and receives

– Update of global diff and event synch for done condition

– Could implement locks and barriers with messages

• Can use REDUCE and BROADCAST library calls to simplify code

/*communicate local diff values and determine if done, using reduction and broadcast*/
25b. REDUCE(0,mydiff,sizeof(float),ADD);
25c. if (pid == 0) then
25i. if (mydiff/(n*n) < TOL) then done = 1;
25k. endif
25m. BROADCAST(0,done,sizeof(int),DONE);

20

Send and Receive Alternatives

• Affect event synch (mutual excl. by fiat: only one process touches data)
• Affect ease of programming and performance

Synchronous messages provide built-in synch. through match

• Separate event synchronization needed with asynch. messages

With synch. messages, our code is deadlocked. Fix?

Can extend functionality: stride, scatter-gather, groups

Semantic flavors: based on when control is returned

Affect when data structures or buffers can be reused at either end
Send/Receive

Synchronous Asynchronous

Blocking asynch. Nonblocking asynch.

21

Orchestration: Summary

 Shared address space
• Shared and private data explicitly separate
• Communication implicit in access patterns
• No correctness need for data distribution
• Synchronization via atomic operations on shared data
• Synchronization explicit and distinct from data communication

 Message passing
• Data distribution among local address spaces needed
• No explicit shared structures (implicit in comm. patterns)
• Communication is explicit
• Synchronization implicit in communication (at least in synch. case)

– mutual exclusion by fiat

22

Correctness in Grid Solver Program

Decomposition and Assignment similar in SAS and message-passing

Orchestration is different

• Data structures, data access/naming, communication, synchronization

SAS Msg-Passing

Explicit global data structure? Yes No

Assignment indept of data layout? Yes No

Communication Implicit Explicit

Synchronization Explicit Implicit

Explicit replication of border rows? No Yes

Requirements for performance are another story ...

