A Comparison of ARM Implementations

by
Matthew Hoffman and Erwins T. Milord
Historical Overview

• Advanced Risc Machines (formerly Acorn Risc Machines)
• Originally conceived by Acorn Computers for business oriented computing in 1985
• Inspired by the Berkley Risc Project
Design Objectives

• Common Architecture
 – Fixed instruction length
 – Load/Store model
 – Pipelined architecture
• Reduced Cost
• Power Efficiency
• Well Rounded Performance
Low Level Implementation

• ARM 64-bit Instruction Set (AArch64)
 – 32-bit instructions
 – 32 128-bit registers
 – Supports 32 or 64-bit arguments

• Jazelle Instruction Set
 – 8-bit instructions
 – Uses Javabyte code execution
Low Level Implementation

• ARM Instruction Set
 – 32-bit instructions
 – Support load-store architecture
 – Execution uses a 3-address format
 – Example : ADDS r0,r1,#1
Low Level Implementation

• Thumb Instruction Set
 – 16-bit instructions, support load-store architecture,
 – Unconditional execution (branch instructions),
 – Uses a 2-address format
 – Example: ADD r1,#1

• Condition Codes
Rise to Popularity

• Initially became popular in Britain
• Dominated by the IBM PC
• Architecture didn’t make it to the commercial domain until 1987
• 1990 joint venture effort by Acorn Computers, Apple Inc. and VLSI Technology
• System-on-Chip approach
Rise to Popularity

• Designer Flexibility
 – Power Efficiency
 – Performance
 – Robust debugging tools

• Uncommon business model

• Manufacturing Flexibility
ARM Product Series

• “Classic” ARM: ARM7, ARM9, ARM11
 – Cheap, low power solutions
 – Cheaper, lower performance than Cortex Series
 – Lower-End devices, or devices that require simple controllers
ARM Product Series

• Cortex Embedded Processors
 – Cortex M Series
 • Low gate count
 • Low power consumption
 • Designed as microcontrollers
 – Cortex R Series
 • Higher Performance
 • Designed for Real-Time Applications
ARM Product Series

• Cortex Application Processor (A Series)
 – Emphasis on performance and power efficiency
 – Most Profitable Platform, fastest growing platform
 – Three Main Varieties:
 • A5 A8 A9
Application of ARM Processors

- Smartphones and Tablets
 - Cortex A Series
 - Combines Power Efficiency and performance
 - Primary Products: Cortex A5 and Cortex A9
 - Some manufactures like Qualcomm only use the ARMv7 ISA
Application of ARM Processors

- Networking
 - High Performance Applications Use Cortex A
 - Fiber to the Home Devices
 - Less demanding applications use Cortex R or M
 - Routers
 - Some also use Classic ARM9 or ARM11
Application of ARM Processors

• Embedded Processors
 – Cortex R, Cortex M, ARM9, ARM11
 – Largest Variety in products
 • Storage Controllers
 • Toys
 • Gadgets
 • Industrial
 • Home Automation
 • Sensors, signal processing
Application of ARM Processors

• Other Applications
 – Other Mobile Internet Devices
 • Smartbooks, netbooks, Ebook Readers, media players, mobile gaming systems
 – Entertainment Units
 • TVs
 • Network Media Players/DVD, Blu Ray Players
 – Micro controlled FPGAs (FPGA Core)
 – Enhanced Security Applications (SecuCore)
Current ARM Implementations

• General Features of Cortex A9
 – Currently most popular high-performance mobile processor
 – 64KB L1 Cache
 • 32KB Data, 32KB Instruction
 – 8-11 State Pipeline
 – Out of Order, Speculative, Dual Issue, Super Scalar
 – Can contain NEON vector processor, dedicated FPU
Current ARM Implementations

- nVidia Tegra (Generations 2 and 3)
 - Tegra 2: Dual Core Cortex A9 + ARM7 Low Power Processor
 - Tegra 3: Quad Core Cortex A9 + Cortex A9 Low Power Processor
 - Dedicated GeForce ULP GPU
 - Dedicated video/image processors
 - 1MB L2 Cache
Current ARM Implementations

• TI OMAP 4
 – Dual Core Cortex A9
 – Integrated Memory Controller
 – 45 nm Technology
 – Dedicated GPU
Current ARM Implementations

• Qualcomm Snapdragon S4 (Krait)
 – Dual Custom ARMv7 cores
 – 28 nm Technology
 – Proprietary Vector Processor
 – Integrated LTE Modem
 – Dedicated GPU
 – Can Power Off Unneeded CPU Cores
Future of ARM

• Cortex A7
 – Low power, cheaper processor
 – Meant to replace Cortex A5
 – Available in 2013/2014 in sub-$100 Smartphones
 – Integrated with A15 using big.LITTLE
Future of ARM

• Cortex A15
 – First Two Devices Launched in October
 • Samsung Chromebook, Galaxy Nexus 10
 – Very High Performance, low power consumption
 – Meant to replace Cortex A9
Future of ARM

• Cortex A50 Series and ARMv8 ISA
 – ARMv8: 64 Bit ISA, fully compatible with 32 bit ARM and THUMB ISAs
 – Cortex A50 series will be first to implement ARMv8
 – A53: Highly Efficient, Low Power Processor
 – A57: High Performance Processor
 – Will use big.LITTLE