Raspberry Pi
Architecture

Michael Fiorenza
Tien Le
Table of contents

- History of Raspberry Pi
- Hardware Overview
- Broadcom BCM2835
- ARM Processors
- Example Pipeline
- Various Projects
History of Raspberry Pi

- Created by the Raspberry Pi Foundation in the UK
- Released in 2012
- Currently sell four board configurations
- Created to help promote the teaching of basic computer science in schools
- As of October 2014, 3.8 million units have been sold
Why use one?

- Low cost, low power usage device
- Relatively simple to setup and use
- Small profile allows it to be used in various projects and not take up much space.
- Multiple Linux distributions have support for ARM Processors.
Specs

- HDMI output (1080p)
- RCA video output (576i, 480i)
- 3.5mm audio jack
- USB 2.0
- Ethernet (Fast-Ethernet)
- SD card reader
- 256 MB, 512 MB RAM
- Broadcom BCM2835 (SoC)
- ARM11 700 MHz processor
- VideoCore IV GPU
- GPIO Pins
- Micro USB powered
 Broadcom BCM2835

- Low Power ARM1176JZ-F Applications Processor
- Dual Core VideoCore IV Multimedia Co-Processor
 - Low Power, High Performance OpenGL, 1GP/s
- 1080p 30fps Full HD HP H.264 Video Encode/Decode
- Graphical capability near Xbox (Original) levels
- Advanced Image Sensor Pipeline
 - up to 20MP cameras operating at 220MP/s
ARM Processors

- ARM is a set of Instruction Set Architectures based on a Reduced Instruction Set Computing (RISC)
- Developed by British Company ARM Holdings
- Has become the most widely used ISA in terms of sheer production
- Used in Raspberry Pi because of its low price, low power usage and availability.
ARM11 Family

- ARM architecture 32-bit RISC microprocessor cores
- Uses ARM version 6
- Announced in April 2002
- Introduced new additions to previous ARM9 & ARM10
 - Single Instruction, Multiple Data
 - Double MPEG-4 & Audio DSP algorithm speeds
 - Multi-processor support
 - New cache architecture
 - Physically addressed cache
 - Redesigned pipeline
 - Out-of-order completion for some operations such as stores
 - Dynamic branch prediction
ARM1176 Structure Components

- Integer Core
 - FL coprocessor
- Memory Management Unit
 - Separate Instruct/Data cache
- Prefetch Unit
 - Branch Prediction
- Coprocessor Interface
 - Keeps pipeline in order
- Interrupt Controller
 - Allows faster interrupt entry
ARM11 Instruction Set

- Three Instruction Sets
 - 32-bit ARM instruction set
 - 16-bit Thumb instruction set
 - Condensed 32-bit code
 - Allows for fast interrupts and DSP algorithms
 - 8-bit Java bytecodes
 - Java compiled code
ARM11 Cache

- 4-way set associative
 - 4 blocks for each set
- Configurable 4 to 64KB
- Deliver 2 words per cycle
- Harvard Implementation
 - Different cache attributes
- Replacement Policy
 - Pseudo-Random
 - Round-Robin
ARM1176JZF-S Pipeline

Common decode pipeline

Fe1	Fe2	De	Iss
1st fetch stage | 2nd fetch stage | Instruction decode | Register read and instruction issue

Ex1	Ex2	Ex3
Sh | ALU | Sat
Shifter operation | Calculate writeback value | Saturation

MAC1 | MAC2 | MAC3
1st multiply stage | 2nd multiply stage | 3rd multiply stage

ADD | DC1 | DC2 | WBIs | WBex
Data address calculation | First stage of data cache access | Second stage of data cache access | Writeback from LSU | Base register writeback

ALU pipeline
Multiply pipeline
Load/store pipeline
Hit under miss
Load miss waits
Typical Pipeline Operations

- Fe1 - First stage of instruction fetch which issues address to memory and data returns from memory.
- Fe2 - Second stage of instruction fetch and branch prediction.
- De - Instruction decode
- Iss - Register read and instruction issue
- Sh - Shifter Stage
- ALU - Main integer operation calculation
- Sat - Pipeline stage for enabling saturation of integer results
- WBex - Write back of data from multiply or main execution pipelines
- MAC1/2/3 - First/Second/Third stage of multiply-accumulate pipeline.
- ADD - Address generation Stage
- DC1/2 - First and Second stage of data cache access.
- WBIs - Write back of data from Load Store Unit
Typical ALU Operation
Progression of a Load that misses
Programming On A Raspi

- The Raspberry Pi supports many official distributions of Linux.
- As quoted from the official Raspberry Pi site:
 - “The Raspberry Pi Foundation recommends Python as a language for learners.”
- Any language that compiles for ARMv6 can be used on the Raspi. Pre-installed default languages include Python, C, C++, Java, Scratch and Ruby
Example Projects

- Teaching programming to kids
- Clustered Super Computer
- Game Emulation
- Automatic Beer Brewing
- Home Security
- Control for Quadcopters

A 32-node Raspberry Pi Beowulf Cluster
Game Emulators
BrewPi
Raspberry Pi
Quadcopter Powered By Raspberry Pi
Raspberry Pi vs Beaglebone Black

Raspberry Pi
- $35
- I/O Pins: 8 Pins
- Power Draw: 260-350 mA
- CPU: ARM1176 @ 700 MHz
- Graphics: 1080p video streams through full sized HDMI
- Expandability: Capable of connecting Arduino Compatible shields

BeagleBone Black
- $45
- I/O Pins: 65 Pins
- Power Draw: 210-460 mA
- CPU: AM3359 Cortex A8 @ 1GHz
- Graphics: Does not support 1080p and only through micro-HDMI
- Expandability: Capes
Conclusion

★ Low cost
★ Great Graphics
★ Size of a Credit Card
★ Simple to setup and use
★ Great for educational purposes
Questions?
References

https://www.broadcom.com/products/BCM2835
http://en.wikipedia.org/wiki/ARM_architecture
http://coen.boisestate.edu/ece/raspberry-pi/
http://www.adafruit.com/blog/2013/07/19/retro-pie-box-portable-raspberry-pi-emulation-console-raspberry_pi-piday-raspberrypi/
http://www.wired.com/2013/02/raspbeery-pi/
http://blog.bricogek.com/noticias/diy/quadcopter-casero-con-raspberry-pi/
http://img.gawkerassets.com/img/18bthkhmzn8bqjpg/original.jpg