ARM Cortex A9

Alyssa Colyette
Xiao Ling Zhuang
Outline

• Introduction
• ARMv7-A ISA
• Cortex-A9 Microarchitecture
 o Single and Multicore Processor
• Advanced Multicore Technologies
• Integrating System on Chips
Introduction

- ARM Cortex-A9 is the 2nd generation of ARM MPCore technology series
- High performance
- Uses ARMv7-A ISA
- Used many embedded devices due to its ability to control different level of power consumption
 - essential for mobile devices
ARMv7-A Architecture

- RISC-based
- Implement two instruction sets
 - 32-bit ARM instruction set
 - 16-bit Thumb-2 instruction set
 - switch ISA as branch or exception
- 37 registers, all 32-bit long
- Support shared and local memory
- Has configurable cache policy
- Backward compatibility
Application Specific Optimization

- 2.50 DMIPS/MHz (Dhrystone)
- Clock rate: 800MHz ~ 2GHz
- NEON Media and Floating Point Processing Engine
- Cache coherence option for enhanced inter-process communication
- Thumb-2 Technology: 30% reduction in memory required to store instruction
- TrustZone Technology
- L2 Cache Controller
Cortex-A9 Single Core Microarchitecture

Cortex-A9 Microarchitecture Structure and the Single Core Interfaces
• Instruction cache size: 16, 32, or 64KB
• Fetching two instructions
• Branch prediction:
 - Global History Buffer: 1-16K entries, 2-bit
 - Branch-Target Address Cache: 512- 4K entries, 2-way
 - Return stack of 8 x 32 bits
• Fast-loop mode: instruction loop smaller than 64 bytes complete without additional cache accesses
- Superscalar Decoder
 - capable of decoding two full instructions per cycle
Microarchitecture: Rename

- Register Renaming
 - resolving data dependencies
 - loop unrolling
Microarchitecture: Issue

- Issue can feed max. of 2 instructions per cycle
- Can dispatch up to 4 instructions per cycle
- Out of order selection of instructions from the issue queue
Microarchitecture: Execute

- Concurrent execution
- Variable length of executing stage (1-3 cycles)
 - ADD R0, R1, R2 (1 cycle)
 - ADD R0, R1, R2 LSL #2 (2 cycle)
 - ADD R0, R1, R2 LSL R3 (3 cycle)
- Neon media and/or floating point processing engine
NEON Media Process Engine (MPE)

- 128-bit SIMD (single instruction multiple data)
- accelerate multimedia and signal processing algorithms
 - video, 2D/3D graphic, audio and speech processing
- has 32 registers (vectors of elements), 64-bits wide
- data type: signed/unsigned 8-bit, 32-bit, 64-bit, and single precision floating point
Floating Point Unit (FPU)

- High-performance single, and double precision floating point instructions
- Double the performance of previous ARM floating point units
- Capable significant enhancing solution with rich graphic, 3D, imaging and scientific computation
Microarchitecture: Memory

- Data forwarding
- 2-level TLB structure
 - Micro and main TLB
- Data prefetcher
 - monitor cache line requests by processor
 - supports 4 cache line fill requests
Memory Hierarchy

• L1 cache
 o split, non-unified
 ▪ 32KB data and 32KB instruction
 o 4-way associative

• L2 cache
 o shared, unified
 o 128KB to 8MB
 o 4 to 16-way associative
Microarchitecture: Writeback

- Out of order write back of instructions
Cortex-A9 MultiCore Processor

Cortex-A9 Multicore Processor Configuration
Cortex-A9 MultiCore Processor

- support between 1-4 CPU in an integrated cache coherent manner
- cache size, FPU (float point unit), PTM (program flow trace macrocell), MPE (media processing engine) interfaces can be configured
- support either single or dual 64-bit AMBA 3 AXI interface
Cortex-A9 MPCore Technology: Snoop Control Unit (SCU)

- central intelligence
- responsible for managing:
 - interconnect
 - arbitration
 - communication
 - cache-2-cache
 - system memory transfer
 - cache data coherence
Cortex-A9 MPCore Technology: Accelerator Coherence Port

- 64-bit slave port
- supports all standard read and write transactions
- follow L1 write through and L2 write back policy
Cortex-A9 MPCore Technology: Generic Interrupt Controller

- supports up to 224 independent interrupts
- can interpret private (TrustZone) I/O interrupts and regular interrupts (OS layer)
- distributed across CPU and hardware prioritized
Cortex-A9 MPCore Technology: Advanced Bus Interface Unit

- enhance the interface between processor and system
- capable of exceeding 12GB/s into the system interconnect
- offer different CPU to bus frequency ratios
- support advance power management
Advanced L2 Cache Controller

• Used to help utilize the the performance and throughput of the processor
 o disabled by default
• Serves as a monitor for memory accesses to the L2 cache between CPUs
• supporting up to 8MB, with between 4 and 16-way associative L2 cache
Apple A5

- IPhone 4s, IPad2, IPad mini
- consists of a dual-core ARM Cortex-A9 MPCore CPU
- Max. CPU clock rate
 - 0.8GHz for IPhone 4s
 - 1GHz for IPad2, mini
- L1 cache: 32 KB instruction + 32 KB data
- L2 cache: 1 MB
OMAP4

- Motorola Razr, kindle Fire, PandaBoard
- version 4430, 4460, and 4470
 - 4470 has increased power efficiency up to 50-90%
- CPU frequency 1 to 1.5 GHz
- MIT Project: Ubuntu mini-cluster of 48 PandaBoards operating at 200W
PlayStation Vita SoC

- 4 Cortex-A9 processors
- Graphics: Quad-core PowerVR SGX543MP4+
- 2 GHz CPU clock rate
- Power: 2200 mAh, 3-5 hours
- 2.2 million units sold
Exynos 4

- Samsung Galaxy S III, Galaxy Note
- Quad-core ARM Cortex A-9
- CPU: 1.4-1.6 GHz
- over 10 million note sold
- over 50 million of S III sold
References

- http://en.wikipedia.org/wiki/Texas_Instruments_OMAP#OMAP_4
- http://en.wikipedia.org/wiki/PlayStation_Vita