Sequential Logic Circuits

- Unlike combinational logic circuits, the output of sequential logic circuits not only depends on current inputs but also on the past sequence of inputs.
- Sequential circuits are constructed using combinational logic and a number of memory elements with some or all of the memory outputs fed back into the combinational logic forming a feedback path or loop.
- A very simple sequential circuit with no inputs created using inverters to form a feedback loop:

![Feedback Loop Diagram]

When this circuit is powered up it randomly outputs \(Q = 0 \) or \(Q = 1 \)
Sequential Logic Circuits

Sequential circuit = Combinational logic + Memory Elements

Current State of A sequential Circuit: Value stored in memory elements (value of state variables).

State transition: A change in the stored values in memory elements thus changing the sequential circuit from one state to another state.
Sequential Circuit Building Blocks:

Generic Memory Elements

- A Memory Element: A logic device that can remember a single-bit value indefinitely, or change its value on command from its inputs.

![Memory Element Diagram]

- The output Q of the memory element represents the value stored in the memory element. This is also called the state variable of the memory elements. A memory element can be in one of two possible states:
 - $Q = 0$ (the memory element has 0 stored), also said to be in state 0.
 - $Q = 1$ (the memory element has 1 stored), also said to be in state 1.

- The commands to the memory element formed by its input(s) may include:
 - Set: Store 1 ($Q=1$) in the memory element.
 - Reset: Store 0 ($Q=0$) in the memory element.
 - Flip: Change stored value from 0 to 1 or from 1 to 0.
 - Hold value: Memory value does not change.

- Memory Element state transition: A change in the stored value from 0 to 1, or from 1 to 0 such as that caused by a flip command.
The State of A sequential Circuit

• A state variable in a sequential circuit represents the single-bit variable Q stored in a memory element in circuit.
 – Each memory element may be in state 0 or state 1 depending on the current value stored in the memory element.

• The State of A sequential Circuit:
 – The collection of all state variables (memory element stored values) that at any time contain all the information about the past necessary to account for the circuit’s future behavior.
 – A sequential circuit that contains n memory elements could be in one of a maximum of 2^n states at any given time depending on the stored values in the memory elements.
 – Sequential Circuit State transition: A change in the stored values in memory elements thus changing the sequential circuit from one state to another.
Clock Signals & Synchronous Sequential Circuits

- A clock signal is a periodic square wave that indefinitely switches values from 0 to 1 and 1 to 0 at fixed intervals.

- Clock cycle time or clock period: The time interval between two consecutive rising or falling edges of the clock.

- Clock Frequency = $1 / \text{clock cycle time}$ (measured in cycles per second or Hz)
 - Example: Clock cycle time = 1ms clock frequency = 1000Hz

- Synchronous Sequential Circuits: Sequential circuits that have a clock signal as one of its inputs:
 - All state transitions in such circuits occur only when the clock value is either 0 or 1 or happen at the rising or falling edges of the clock depending on the type of memory elements used in the circuit.
Sequential Circuit Memory Elements: Latches, Flip-Flops

• Latches and flip-flops are the basic single-bit memory elements used to build sequential circuit with one or two inputs/outputs, designed using individual logic gates and feedback loops.

• Latches:
 – The output of a latch depends on its current inputs and on its previous inputs and its change of state can happen at any time when its inputs change.

• Flip-Flop:
 – The output of a flip-flop also depends on current and previous input but the change in output (change of state or state transition) occurs at specific times determined by a clock input.
Sequential Circuit Memory Elements: Latches, Flip-Flops

• Latches:
 – S-R Latch
 – S-R Latch With Enable
 – D-Latch

• Flip-Flops:
 – Edge-Triggered D Flip-Flop
 – Master/Slave S-R Flip-Flop
 – Master/Slave J-K Flip-Flop
 – Edge-Triggered J-K Flip-Flop
 – T Flip-Flop With Enable
S-R Latch

• An S-R (set-reset) latch can be built using two NOR-gates forming a feedback loop.

• The output of the S-R latch depends on current as well as previous inputs or state, and its state (value stored) can change as soon as its inputs change.

<table>
<thead>
<tr>
<th>S</th>
<th>R</th>
<th>Q</th>
<th>QN</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>last Q</td>
<td>Last QN</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Circuit
S-R Latch With Enable

- Since the S-R latch is responsive to its inputs at all times an enable line C is used to disable or enable state transitions.
- Behaves similar to a regular S-R latch when enable C=1

Function Table

<table>
<thead>
<tr>
<th>S</th>
<th>R</th>
<th>C</th>
<th>Q</th>
<th>QN</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>last Q</td>
<td>last QN</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>x</td>
<td>x</td>
<td>0</td>
<td>last Q</td>
<td>last QN</td>
</tr>
</tbody>
</table>

Logic Symbol

Circuit

S
Enable C
R
D-Latch

- Similar to S-R latch with an enable line, but both S, R are generated from one input D (data) and an inverter.
- Stores the value of its input D when enable C =1.

Function Table

<table>
<thead>
<tr>
<th>C</th>
<th>D</th>
<th>Q</th>
<th>QN</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>x</td>
<td>Last Q</td>
<td>Last QN</td>
</tr>
</tbody>
</table>

Circuit
Edge-Triggered D Flip-Flop

- Uses a pair of D latches and inverters.
- Similar in behavior to a D latch except that output and state changes happen at the rising or falling edge of an input clock.
- A D Flip-Flop triggered on the rising edge of the clock is given by:

\[
\begin{array}{c|c|c}
D & Q & QN \\
0 & 0 & 1 \\
1 & 1 & 0 \\
x & 0 & \text{Last } Q \\
x & x & \text{Last } QN \\
\end{array}
\]
Master/Slave S-R Flip-Flop

- S-R latches are substituted for the D latches in the negative-edge triggered D flip flop

Function Table

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th>Q</th>
<th>QN</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>x</td>
<td>0</td>
<td><sup>last</sup> Q</td>
<td><sup>last</sup> QN</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td></td>
<td><sup>last</sup> Q</td>
<td><sup>last</sup> QN</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td></td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td></td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td></td>
<td><sup>undef.</sup></td>
<td><sup>undef.</sup></td>
</tr>
</tbody>
</table>
Master/Slave J-K Flip-Flop

- Solves the problem in the problem when both S=R=1
- When J=K=1 the last state is inverted.

Function Table

<table>
<thead>
<tr>
<th>J</th>
<th>K</th>
<th>C</th>
<th>Q</th>
<th>QN</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>x</td>
<td>0</td>
<td>last Q</td>
<td>last QN</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td></td>
<td>last Q</td>
<td>last QN</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td></td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td></td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td></td>
<td>last QN</td>
<td>last Q</td>
</tr>
</tbody>
</table>

Logic Symbol

Master Latch

Slave Latch

Circuit

Master/Slave J-K Flip-Flop

- Solves the problem when both S=R=1
- When J=K=1 the last state is inverted.
Edge Triggered J-K Flip-Flop

- Created from an edge-triggered D flip-flop

Function Table

<table>
<thead>
<tr>
<th>J</th>
<th>K</th>
<th>C</th>
<th>Q</th>
<th>QN</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>x</td>
<td>0</td>
<td>last Q</td>
<td>last QN</td>
</tr>
<tr>
<td>x</td>
<td>x</td>
<td>1</td>
<td>last Q</td>
<td>last QN</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>last Q</td>
<td>last QN</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>last QN</td>
<td>last Q</td>
</tr>
</tbody>
</table>
T Flip-Flop With Enable

- Changes state on every clock cycle (rising edge of T).

![Circuit Diagram]

Function Table

<table>
<thead>
<tr>
<th>T</th>
<th>En</th>
<th>Q</th>
<th>QN</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>0</td>
<td>last Q</td>
<td>last QN</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>last QN</td>
<td>last Q</td>
</tr>
</tbody>
</table>