MIPS Integer ALU Requirements

- Add, AddU, Sub, SubU, AddI, AddIU:
 → 2’s complement adder/sub with overflow detection.

- And, Or, Andi, Ori, Xor, Xori, Nor:
 → Logical AND, logical OR, XOR, nor.

- SLTI, SLTIU (set less than):
 → 2’s complement adder with inverter, check sign bit of result.
MIPS Arithmetic Instructions

<table>
<thead>
<tr>
<th>Instruction</th>
<th>Example</th>
<th>Meaning</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>add</td>
<td>add $1,$2,$3</td>
<td>$1 = $2 + $3</td>
<td>3 operands; exception possible</td>
</tr>
<tr>
<td>subtract</td>
<td>sub $1,$2,$3</td>
<td>$1 = $2 – $3</td>
<td>3 operands; exception possible</td>
</tr>
<tr>
<td>add immediate</td>
<td>addi $1,$2,100</td>
<td>$1 = $2 + 100</td>
<td>+ constant; exception possible</td>
</tr>
<tr>
<td>add unsigned</td>
<td>addu $1,$2,$3</td>
<td>$1 = $2 + $3</td>
<td>3 operands; no exceptions</td>
</tr>
<tr>
<td>subtract unsigned</td>
<td>subu $1,$2,$3</td>
<td>$1 = $2 – $3</td>
<td>3 operands; no exceptions</td>
</tr>
<tr>
<td>add imm. unsign.</td>
<td>addiu $1,$2,100</td>
<td>$1 = $2 + 100</td>
<td>+ constant; no exceptions</td>
</tr>
<tr>
<td>multiply</td>
<td>mult $2,$3</td>
<td>Hi, Lo = $2 x $3</td>
<td>64-bit signed product</td>
</tr>
<tr>
<td>multiply unsigned</td>
<td>multu$2,$3</td>
<td>Hi, Lo = $2 x $3</td>
<td>64-bit unsigned product</td>
</tr>
<tr>
<td>divide</td>
<td>div $2,$3</td>
<td>Lo = $2 ÷ $3,</td>
<td>Lo = quotient, Hi = remainder</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hi = $2 mod $3</td>
<td></td>
</tr>
<tr>
<td>divide unsigned</td>
<td>divu $2,$3</td>
<td>Lo = $2 ÷ $3,</td>
<td>Unsigned quotient & remainder</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hi = $2 mod $3</td>
<td></td>
</tr>
<tr>
<td>Move from Hi</td>
<td>mfhi $1</td>
<td>$1 = Hi</td>
<td>Used to get copy of Hi</td>
</tr>
<tr>
<td>Move from Lo</td>
<td>mflo $1</td>
<td>$1 = Lo</td>
<td>Used to get copy of Lo</td>
</tr>
</tbody>
</table>
MIPS Arithmetic Instruction Format

R-type:

```
<table>
<thead>
<tr>
<th>31</th>
<th>25</th>
<th>20</th>
<th>15</th>
<th>5</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>op</td>
<td>Rs</td>
<td>Rt</td>
<td>Rd</td>
<td>funct</td>
<td></td>
</tr>
</tbody>
</table>
```

I-Type:

```
<table>
<thead>
<tr>
<th>op</th>
<th>Rs</th>
<th>Rt</th>
<th>Immed 16</th>
</tr>
</thead>
</table>
```

<table>
<thead>
<tr>
<th>Type</th>
<th>op</th>
<th>funct</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADDI</td>
<td>10</td>
<td>xx</td>
</tr>
<tr>
<td>ADDIU</td>
<td>11</td>
<td>xx</td>
</tr>
<tr>
<td>SLTI</td>
<td>12</td>
<td>xx</td>
</tr>
<tr>
<td>SLTIU</td>
<td>13</td>
<td>xx</td>
</tr>
<tr>
<td>ANDI</td>
<td>14</td>
<td>xx</td>
</tr>
<tr>
<td>ORI</td>
<td>15</td>
<td>xx</td>
</tr>
<tr>
<td>XORI</td>
<td>16</td>
<td>xx</td>
</tr>
<tr>
<td>LUI</td>
<td>17</td>
<td>xx</td>
</tr>
<tr>
<td>ADD</td>
<td>00</td>
<td>40</td>
</tr>
<tr>
<td>ADDU</td>
<td>00</td>
<td>41</td>
</tr>
<tr>
<td>SUB</td>
<td>00</td>
<td>42</td>
</tr>
<tr>
<td>SUBU</td>
<td>00</td>
<td>43</td>
</tr>
<tr>
<td>AND</td>
<td>00</td>
<td>44</td>
</tr>
<tr>
<td>OR</td>
<td>00</td>
<td>45</td>
</tr>
<tr>
<td>XOR</td>
<td>00</td>
<td>46</td>
</tr>
<tr>
<td>NOR</td>
<td>00</td>
<td>47</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Type</th>
<th>op</th>
<th>funct</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>00</td>
<td>51</td>
<td></td>
</tr>
<tr>
<td>00</td>
<td>52</td>
<td></td>
</tr>
<tr>
<td>00</td>
<td>53</td>
<td></td>
</tr>
</tbody>
</table>
MIPS Integer ALU Requirements

(1) Functional Specification:
inputs: 2 x 32-bit operands A, B, 4-bit mode
outputs: 32-bit result S, 1-bit carry, 1 bit overflow, 1 bit zero
operations: add, addu, sub, subu, and, or, xor, nor, slt, sltU

(2) Block Diagram:

10 operations thus 4 control bits

<table>
<thead>
<tr>
<th>Code</th>
<th>Operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>add</td>
</tr>
<tr>
<td>01</td>
<td>addU</td>
</tr>
<tr>
<td>02</td>
<td>sub</td>
</tr>
<tr>
<td>03</td>
<td>subU</td>
</tr>
<tr>
<td>04</td>
<td>and</td>
</tr>
<tr>
<td>05</td>
<td>or</td>
</tr>
<tr>
<td>06</td>
<td>xor</td>
</tr>
<tr>
<td>07</td>
<td>nor</td>
</tr>
<tr>
<td>12</td>
<td>slt</td>
</tr>
<tr>
<td>13</td>
<td>sltU</td>
</tr>
</tbody>
</table>
Building Block: 1-bit Full Adder

A
B
Cin

A
B

CarryIn

1-bit Full Adder

S

Cout

Sum

CarryOut
Building Block: 1-bit ALU

Performs: AND, OR, addition on A, B or A, B inverted

Diagram:
- A
- B
- invertB
- CarryIn
- Operation
- Result
- 1-bit Full Adder
- CarryOut
32-Bit ALU Using 32 1-Bit ALUs

![Diagram of 32-bit rippled-carry adder](image)

32-bit rippled-carry adder
(operation/invertB lines not shown)

Addition/Subtraction Performance:
Total delay = 32 x (1-Bit ALU Delay)
= 32 x 2 x gate delay
= 64 x gate delay
Adding Overflow/Zero Detection Logic

- For a N-bit ALU: Overflow = CarryIn[N - 1] XOR CarryOut[N - 1]
Adding Support For SLT

- In SLT if $A < B$, the least significant result bit is set to 1.
- Perform $A - B$, $A < B$ if sign bit is 1
 - Use sign bit as Result0 setting all other result bits to zero.

Modified 1-Bit ALU

<table>
<thead>
<tr>
<th>Control values:</th>
</tr>
</thead>
<tbody>
<tr>
<td>000 = and</td>
</tr>
<tr>
<td>001 = or</td>
</tr>
<tr>
<td>010 = add</td>
</tr>
<tr>
<td>110 = subtract</td>
</tr>
<tr>
<td>111 = slt</td>
</tr>
</tbody>
</table>

- Position 0: connected to sign bit, Result31
- Positions 1-31: set to 0
MIPS ALU With SLT Support Added

1-bit ALU

Less
A0
B0

Result0

CarryIn0

A1
B1

Less = 0

CarryIn1

Result1

CarryOut0

A2
B2

Less = 0

CarryIn2

Result2

CarryOut1

A31
B31

Less = 0

CarryIn31

Result31

C

CarryOut30

C

Zero

Overflow
Improving ALU Performance: Carry Look Ahead (CLA)

A B C-out
0 0 0 "kill"
0 1 C-in "propagate"
1 0 C-in "propagate"
1 1 1 "generate"

G = A and B
P = A xor B

C1 = G0 + C0 \cdot P0
C2 = G1 + G0 \cdot P1 + C0 \cdot P0 \cdot P1
C3 = G2 + G1 \cdot P2 + G0 \cdot P1 \cdot P2 + C0 \cdot P0 \cdot P1 \cdot P2
C4 = \ldots
Cascaded Carry Look-ahead
16-Bit Example

C1 = G0 + C0 \cdot P0
C2 = G1 + G0 \cdot P1 + C0 \cdot P0 \cdot P1
C3 = G2 + G1 \cdot P2 + G0 \cdot P1 \cdot P2 + C0 \cdot P0 \cdot P1 \cdot P2
C4 = \ldots

Delay = 2 + 2 + 1 = 5 gate delays

Assuming all gates have equal delay
Additional MIPS ALU requirements

- **Mult, MultU, Div, DivU:**

 => Need 32-bit multiply and divide, signed and unsigned.

- **Sll, Srl, Sra:**

 => Need left shift, right shift, right shift arithmetic by 0 to 31 bits.

- **Nor:**

 => logical NOR to be added.
Unsigned Multiplication Example

• Paper and pencil example (unsigned):

Multiplicand	1000
Multiplier	1001
	1000
	0000
	0000
Product	1000
	01001000

• \(m \) bits \(\times n \) bits = \(m + n \) bit product, \(m = 32, n = 32 \), 64 bit product.

• The binary number system simplifies multiplication:

 0 => place 0 (0 x multiplicand).
 1 => place a copy (1 x multiplicand).

• We will examine 4 versions of multiplication hardware & algorithm:

 –Successive refinement of design.
An Unsigned Combinational Multiplier

- Stage \(i \) accumulates \(A \times 2^i \) if \(B_i = 1 \)
- How much hardware for a 32-bit multiplier? Critical path?
Operation of Combinational Multiplier

- At each stage shift A left (x 2).
- Use next bit of B to determine whether to add in shifted multiplicand.
- Accumulate 2n bit partial product at each stage.
Unsigned Shift-Add Multiplier (version 1)

- 64-bit Multiplicand register.
- 64-bit ALU.
- 64-bit Product register.
- 32-bit multiplier register.

Multiplier = datapath + control
Multiply Algorithm

Version 1

1. **Test Multiplier0**
 - Multiplier0 = 1
 - Multiplier0 = 0

 - **Add multiplicand to product & place the result in Product register**

2. **Shift the Multiplicand register left 1 bit.**

3. **Shift the Multiplier register right 1 bit.**

Example Execution

<table>
<thead>
<tr>
<th>Product</th>
<th>Multiplier</th>
<th>Multiplicand</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000 0000</td>
<td>0011</td>
<td>0000 0010</td>
</tr>
<tr>
<td>0000 0010</td>
<td>0001</td>
<td>0000 0100</td>
</tr>
<tr>
<td>0000 0110</td>
<td>0000</td>
<td>0000 1000</td>
</tr>
<tr>
<td>0000 0110</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **32nd repetition?**
 - No: < 32 repetitions
 - Yes: 32 repetitions

- **Done**
MULTIPLY HARDWARE Version 2

- Instead of shifting multiplicand to left, shift product to right:
 - 32-bit Multiplicand register.
 - 32-bit ALU.
 - 64-bit Product register.
 - 32-bit Multiplier register.
Multiply Algorithm
Version 2

Start

1. Test Multiplier0

 Multiplier0 = 1
 1a. Add multiplicand to the left half of product & place the result in the left half of Product register

 Multiplier0 = 0

2. Shift the Product register right 1 bit.

3. Shift the Multiplier register right 1 bit.

32nd repetition?

 No: < 32 repetitions

 Yes: 32 repetitions

Done
Multiplication Version 2 Operation

- Multiplicand stays still and product moves right.
MULTIPLY HARDWARE Version 3

- Combine Multiplier register and Product register:
 - 32-bit Multiplicand register.
 - 32-bit ALU.
 - 64-bit Product register, (0-bit Multiplier register).
Multiply Algorithm
Version 3

Start

1. Test Product0

Product0 = 1

1a. Add multiplicand to the left half of product & place the result in the left half of Product register

2. Shift the Product register right 1 bit.

32nd repetition?

No: < 32 repetitions

Yes: 32 repetitions

Done
Observations on Multiply Version 3

- 2 steps per bit because Multiplier & Product are combined.
- MIPS registers Hi and Lo are left and right halves of Product.
- Provides the MIPS instruction MultU.

What about signed multiplication?

- The easiest solution is to make both positive & remember whether to complement product when done (leave out the sign bit, run for 31 steps).

- Apply definition of 2’s complement:
 - Need to sign-extend partial products and subtract at the end.

- Booth’s Algorithm is an elegant way to multiply signed numbers using the same hardware as before and save cycles:
 - Can handle multiple bits at a time.
Motivation for Booth’s Algorithm

- Example 2 x 6 = 0010 x 0110:

 \[
 \begin{array}{c}
 0010 \\
 \times 0110 \\
 \hline
 + 0000 \quad \text{shift (0 in multiplier)} \\
 + 0010 \quad \text{add (1 in multiplier)} \\
 + 0100 \quad \text{add (1 in multiplier)} \\
 + 0000 \quad \text{shift (0 in multiplier)} \\
 \hline
 00001100
 \end{array}
 \]

- An ALU with add or subtract gets the same result in more than one way:

 \[6 = -2 + 8\]

 \[0110 = -00010 + 01000 = 11110 + 01000\]

- For example:

 \[
 \begin{array}{c}
 0010 \\
 \times 0110 \\
 \hline
 0000 \quad \text{shift (0 in multiplier)} \\
 - 0010 \quad \text{sub (first 1 in multpl.)} \\
 0000 \quad \text{shift (mid string of 1s)} \\
 + 0010 \quad \text{add (prior step had last 1)} \\
 \hline
 00001100
 \end{array}
 \]
Booth’s Algorithm

<table>
<thead>
<tr>
<th>Current Bit</th>
<th>Bit to the Right</th>
<th>Explanation</th>
<th>Example</th>
<th>Op</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>Begins run of 1s</td>
<td>00011111000</td>
<td>sub</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>Middle of run of 1s</td>
<td>00011111000</td>
<td>none</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>End of run of 1s</td>
<td>00011111000</td>
<td>add</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>Middle of run of 0s</td>
<td>00011111000</td>
<td>none</td>
</tr>
</tbody>
</table>

- Originally designed for Speed (when shift was faster than add).
- Replace a string of 1s in multiplier with an initial subtract when we first see a one and then later add for the bit after the last one.
Booth Example (2 x 7)

<table>
<thead>
<tr>
<th>Operation</th>
<th>Multiplicand</th>
<th>Product</th>
<th>next?</th>
</tr>
</thead>
<tbody>
<tr>
<td>0. initial value</td>
<td>0010</td>
<td>0000 0111 0</td>
<td>10 -> sub</td>
</tr>
<tr>
<td>1a. P = P - m</td>
<td>1110</td>
<td>+ 1110 1110 0111 0</td>
<td>shift P (sign ext)</td>
</tr>
<tr>
<td>1b.</td>
<td>0010</td>
<td>1111 0011 1</td>
<td>11 -> nop, shift</td>
</tr>
<tr>
<td>2.</td>
<td>0010</td>
<td>1111 1001 1</td>
<td>11 -> nop, shift</td>
</tr>
<tr>
<td>3.</td>
<td>0010</td>
<td>1111 1100 1</td>
<td>01 -> add</td>
</tr>
<tr>
<td>4a.</td>
<td>0010</td>
<td>+ 0010 0001 1100 1</td>
<td>shift</td>
</tr>
<tr>
<td>4b.</td>
<td>0010</td>
<td>0000 1110 0</td>
<td>done</td>
</tr>
</tbody>
</table>
Booth Example (2 x -3)

<table>
<thead>
<tr>
<th>Operation</th>
<th>Multiplicand</th>
<th>Product</th>
<th>next?</th>
</tr>
</thead>
<tbody>
<tr>
<td>0. initial value</td>
<td>0010 1110</td>
<td>0000 1101 0</td>
<td>10 -> sub</td>
</tr>
<tr>
<td>1a. P = P - m</td>
<td>1110</td>
<td>+ 1110</td>
<td>shift P (sign ext)</td>
</tr>
<tr>
<td>1b.</td>
<td>0010</td>
<td>1111 0110 1</td>
<td>01 -> add</td>
</tr>
<tr>
<td></td>
<td>+ 0010</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2a.</td>
<td>0001 0110 1</td>
<td></td>
<td>shift P</td>
</tr>
<tr>
<td>2b.</td>
<td>0010</td>
<td>0000 1011 0</td>
<td>10 -> sub</td>
</tr>
<tr>
<td></td>
<td>+ 1110</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3a.</td>
<td>0010</td>
<td>1110 1011 0</td>
<td>shift</td>
</tr>
<tr>
<td>3b.</td>
<td>0010</td>
<td>1111 0101 1</td>
<td>11 -> nop</td>
</tr>
<tr>
<td>4a</td>
<td>1111 0101 1</td>
<td></td>
<td>shift</td>
</tr>
<tr>
<td>4b.</td>
<td>0010</td>
<td>1111 1010 1</td>
<td>done</td>
</tr>
</tbody>
</table>
MIPS Logical Instructions

<table>
<thead>
<tr>
<th>Instruction</th>
<th>Example</th>
<th>Meaning</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>and</td>
<td>and $1,$2,$3</td>
<td>$1 = $2 & $3</td>
<td>3 reg. operands; Logical AND</td>
</tr>
<tr>
<td>or</td>
<td>or $1,$2,$3</td>
<td>$1 = $2</td>
<td>$3</td>
</tr>
<tr>
<td>xor</td>
<td>xor $1,$2,$3</td>
<td>$1 = $2 ⊕ $3</td>
<td>3 reg. operands; Logical XOR</td>
</tr>
<tr>
<td>nor</td>
<td>nor $1,$2,$3</td>
<td>$1 = ~(2</td>
<td>$3)</td>
</tr>
<tr>
<td>and immediate</td>
<td>andi $1,$2,10</td>
<td>$1 = $2 & 10</td>
<td>Logical AND reg, constant</td>
</tr>
<tr>
<td>or immediate</td>
<td>ori $1,$2,10</td>
<td>$1 = $2</td>
<td>10</td>
</tr>
<tr>
<td>xor immediate</td>
<td>xori $1, $2,10</td>
<td>$1 = ~(2 &~10</td>
<td>Logical XOR reg, constant</td>
</tr>
<tr>
<td>shift left logical</td>
<td>sll $1,$2,10</td>
<td>$1 = $2 << 10</td>
<td>Shift left by constant</td>
</tr>
<tr>
<td>shift right logical</td>
<td>rl $1,$2,10</td>
<td>$1 = $2 >> 10</td>
<td>Shift right by constant</td>
</tr>
<tr>
<td>shift right arithm.</td>
<td>sra $1,$2,10</td>
<td>$1 = $2 >> 10</td>
<td>Shift right (sign extend)</td>
</tr>
<tr>
<td>shift left logical</td>
<td>slv $1,$2,3</td>
<td>$1 = $2 << $3</td>
<td>Shift left by variable</td>
</tr>
<tr>
<td>shift right logical</td>
<td>srlv $1,$2, $3</td>
<td>$1 = $2 >> $3</td>
<td>Shift right by variable</td>
</tr>
<tr>
<td>shift right arithm.</td>
<td>srav $1,$2, $3</td>
<td>$1 = $2 >> $3</td>
<td>Shift right arith. by variable</td>
</tr>
</tbody>
</table>
Combinational Shifter from MUXes

Basic Building Block

\[
\begin{array}{cc}
A & B \\
\text{sel} & 1 & 0 \\
D &
\end{array}
\]

8-bit right shifter

\[
\begin{array}{cccccccc}
A_7 & A_6 & A_5 & A_4 & A_3 & A_2 & A_1 & A_0 \\
1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\
1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\
1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\
1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\
1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\
1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\
1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\
R_7 & R_6 & R_5 & R_4 & R_3 & R_2 & R_1 & R_0 \\
\end{array}
\]

- What comes in the MSBs?
- How many levels for 32-bit shifter?
If added Right-to-left connections could support Rotate (not in MIPS but found in ISAs)
Barrel Shifter

Technology-dependent solution: a transistor per switch
Division

\[
\begin{array}{c|c}
\text{Divisor} & 1000 \\
\text{Quotient} & 1001 \\
\text{Dividend} & 1001010 \\
\end{array}
\]

-1000

10

101

1010

-1000

10

Remainder (or Modulo result)

- See how big a number can be subtracted, creating quotient bit on each step:

 Binary => 1 * divisor or 0 * divisor

 \[
 \text{Dividend} = \text{Quotient} \times \text{Divisor} + \text{Remainder}
 \]

 => | Dividend | = | Quotient | + | Divisor |

- 3 versions of divide, successive refinement
DIVIDE HARDWARE Version 1

- 64-bit Divisor register.
- 64-bit ALU.
- 64-bit Remainder register.
- 32-bit Quotient register.
Divide Algorithm
Version 1

Takes n+1 steps for n-bit Quotient & Rem.

1. Subtract the Divisor register from the Remainder register, and place the result in the Remainder register.

Remainder >= 0

Remainder < 0

Test Remainder

2a. Shift the Quotient register to the left setting the new rightmost bit to 1.

2b. Restore the original value by adding the Divisor register to the Remainder register, & place the sum in the Remainder register. Also shift the Quotient register to the left, setting the new least significant bit to 0.

3. Shift the Divisor register right 1 bit.

n+1 repetition?

No: < n+1 repetitions

Yes: n+1 repetitions (n = 4 here)

Done
Observations on Divide Version 1

• 1/2 bits in divisor are always 0.
 => 1/2 of 64-bit adder is wasted.
 => 1/2 of divisor is wasted.

• Instead of shifting divisor to right, shift remainder to left?

• 1st step cannot produce a 1 in quotient bit (otherwise too big).
 => Switch order to shift first and then subtract, can save 1 iteration.
DIVIDE HARDWARE Version 2

- 32-bit Divisor register.
- 32-bit ALU.
- 64-bit Remainder register.
- 32-bit Quotient register.

- 32-bit Divisor register.
- 32-bit ALU.
- 64-bit Remainder register.
- 32-bit Quotient register.
Divide Algorithm Version 2

Start: Place Dividend in Remainder

1. Shift the **Remainder register left 1 bit**.

2. Subtract the Divisor register from the **left half of the** Remainder register, & place the result in the **left half of the** Remainder register.

 Remainder >= 0

 Test

 Remainder < 0

3a. Shift the Quotient register to the left setting the new rightmost bit to 1.

3b. Restore the original value by adding the Divisor register to the **left half of the** Remainder register, & place the sum in the **left half of the** Remainder register. Also shift the Quotient register to the left, setting the new least significant bit to 0.

nth repetition?

- No: < n repetitions
- Yes: n repetitions (n = 4 here)

Done
Observations on Divide Version 2

• Eliminate Quotient register by combining with Remainder as shifted left:
 – Start by shifting the Remainder left as before.
 – Thereafter loop contains only two steps because the shifting of the Remainder register shifts both the remainder in the left half and the quotient in the right half.
 – The consequence of combining the two registers together and the new order of the operations in the loop is that the remainder will shifted left one time too many.
 – Thus the final correction step must shift back only the remainder in the left half of the register.
DIVIDE HARDWARE Version 3

- 32-bit Divisor register.
- 32-bit ALU.
- 64-bit Remainder register (0-bit Quotient register).

Diagram:

- Divisor register connected via 32-bit ALU
- ALU processes data labeled "HI" and "LO"
- Remainder register connected to 64-bit data
- Control module with inputs for Shift Left and Write

Legend:
- "HI" and "LO" inputs and processes in ALU
- 32 bits and 64 bits data flow directions
Divide Algorithm
Version 3

Start: Place Dividend in Remainder

1. Shift the Remainder register left 1 bit.

2. Subtract the Divisor register from the left half of the Remainder register, & place the result in the left half of the Remainder register.

3a. Shift the Remainder register to the left setting the new rightmost bit to 1.

3b. Restore the original value by adding the Divisor register to the left half of the Remainder register, & place the sum in the left half of the Remainder register. Also shift the Remainder register to the left, setting the new least significant bit to 0.

Remainder >= 0

Test

Remainder

Remainder < 0

n

nth repetition?

No: < n repetitions

Yes: n repetitions (n = 4 here)

Done. Shift left half of Remainder right 1 bit.
Observations on Divide Version 3

• Same Hardware as Multiply: Just requires an ALU to add or subtract, and 64-bit register to shift left or shift right.

• Hi and Lo registers in MIPS combine to act as 64-bit register for multiply and divide.

• Signed Divides: Simplest is to remember signs, make positive, and complement quotient and remainder if necessary.
 – Note:
 • Dividend and Remainder must have same sign.
 • Quotient negated if Divisor sign & Dividend sign disagree.
 • e.g., \(-7 \div 2 = -3\), remainder = \(-1\)

• Possible for quotient to be too large: If dividing a 64-bit integer by 1, quotient is 64 bits (“called saturation”).
Scientific Notation

Decomposition of scientific notation:
- **Sign**: 5
- **Mantissa**: 04 x 10
- **Radix (base)**: 5
- **Exponent**: 25

Scientific notation example:
- **Sign**: -1
- **Mantissa**: 673 x 10
- **Radix (base)**: 24

Example conversion:
- **5.04 x 10^-25**
- **-1.673 x 10^-24**

Sign, Magnitude
Representation of Floating Point Numbers in Single Precision **IEEE 754 Standard**

Value = \(N = (-1)^S \times 2^{E-127} \times (1.M) \)

- **Sign** (`S`): 1 bit
- **Exponent** (`E`): 8 bits
- **Mantissa** (`M`): 23 bits

Example:
- \(0 = 0.00000000 \ldots 0 \)
- \(-1.5 = 1.01111111 \ldots 0 \)

Magnitude of numbers that can be represented:
- \(2^{-126} (1.0) \) to \(2^{127} (2 - 2^{-23}) \)

Which is approximately:
- \(1.8 \times 10^{-38} \) to \(3.40 \times 10^{38} \)

- **0 < E < 255**
- Actual exponent is: \(e = E - 127 \)

exponent: excess 127 binary integer added
mantissa: sign + magnitude, normalized binary significand with a hidden integer bit: \(1.M \)
Representation of Floating Point Numbers in Double Precision \textit{IEEE 754 Standard}

Value = N = (-1)^S \times 2^{E-1023} \times (1.M)

\begin{center}
\begin{tabular}{c c}
\hline
\textbf{S} & \textbf{E} & \textbf{M} \\
\hline
1 & 11 & 52 \\
\hline
\end{tabular}
\end{center}

0 < E < 2047
Actual exponent is:
\text{e} = E - 1023

Magnitude of numbers that can be represented is in the range:
\[2^{-1022} (1.0) \text{ to } 2^{1023} (2 - 2^{-52}) \]

Which is approximately:
\[2.23 \times 10^{308} \text{ to } 1.8 \times 10^{308} \]

Example:
\begin{align*}
0 &= 0.00000000000 \ldots 0 \\
-1.5 &= 1.01111111111 \ldots 0
\end{align*}
IEEE 754 Special Number Representation

<table>
<thead>
<tr>
<th>Single Precision</th>
<th>Double Precision</th>
<th>Number Represented</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exponent</td>
<td>Significand</td>
<td>Exponent</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>nonzero</td>
<td>0</td>
</tr>
<tr>
<td>1 to 254</td>
<td>anything</td>
<td>1 to 2046</td>
</tr>
<tr>
<td>255</td>
<td>0</td>
<td>2047</td>
</tr>
<tr>
<td>255</td>
<td>nonzero</td>
<td>2047</td>
</tr>
</tbody>
</table>

¹ May be returned as a result of underflow in multiplication
² Positive divided by zero yields “infinity”
³ Zero divide by zero yields NaN “not a number”
Floating Point Conversion Example

- The decimal number \(.75_{10}\) is to be represented in the IEEE 754 32-bit single precision format:

\[-2345.125_{10} = 0.11_2\] (converted to a binary number)

\[= 1.1 \times 2^{-1}\] (normalized a binary number)

- The mantissa is positive so the sign \(S\) is given by:

\[S = 0\]

- The biased exponent \(E\) is given by \(E = e + 127\)

\[E = -1 + 127 = 126_{10} = 01111110_2\]

- Fractional part of mantissa \(M\):

\[M = .10000000000000000000000\] (in 23 bits)

The IEEE 754 single precision representation is given by:

\[
\begin{array}{ccc}
0 & 01111110 & 10000000000000000000000 \\
S & E & M
\end{array}
\]
Floating Point Conversion Example

- The decimal number \(-2345.125\) is to be represented in the IEEE 754 32-bit single precision format:

 \[-2345.125 = -100100101001.001_2 \] (converted to binary)

 \[-1.00100101001001 \times 2^{11} \] (normalized binary)

- The mantissa is negative so the sign \(S\) is given by:

 \[S = 1\]

- The biased exponent \(E\) is given by \(E = e + 127\)

 \[E = 11 + 127 = 138_{10} = 10001010_2\]

- Fractional part of mantissa \(M\):

 \[M = .00100101001001000000000\] (in 23 bits)

The IEEE 754 single precision representation is given by:

\[
\begin{array}{c|c|c}
S & E & M \\
1 & 10001010 & 0010010100100100000000000 \\
1 bit & 8 bits & 23 bits \\
\end{array}
\]
Basic Floating Point Addition Algorithm

Assuming that the operands are already in the IEEE 754 format, performing floating point addition: \[\text{Result} = X + Y = (Xm \times 2^{Xe}) + (Ym \times 2^{Ye}) \]

involves the following steps:

1. Align binary point:
 - Initial result exponent: the larger of \(Xe, Ye \)
 - Compute exponent difference: \(Ye - Xe \)
 - If \(Ye > Xe \) Right shift \(Xm \) that many positions to form \(Xm \times 2^{Ye-Xe} \)
 - If \(Xe > Ye \) Right shift \(Ym \) that many positions to form \(Ym \times 2^{Ye-Xe} \)

2. Compute sum of aligned mantissas:
 \[\text{i.e.} \quad Xm2^{Ye-Xe} + Ym \quad \text{or} \quad Xm + Xm2^{Ye-Xe} \]

3. If normalization of result is needed, then a normalization step follows:
 - Left shift result, decrement result exponent (e.g., if result is 0.001xx…) or
 - Right shift result, increment result exponent (e.g., if result is 10.1xx…)
 Continue until MSB of data is 1 (NOTE: Hidden bit in IEEE Standard).

4. Doubly biased exponent must be corrected: extra subtraction step of the bias amount.

5. Check result exponent:
 - If larger than maximum exponent allowed return exponent overflow
 - If smaller than minimum exponent allowed return exponent underflow

6. Round the significand and re-normalize if needed. If result mantissa is 0, may need to set the exponent to zero by a special step to return a proper zero.
Floating Point Addition

Flowchart

Start

1. Compare the exponents of the two numbers. Shift the smaller number to the right until its exponent matches the larger exponent.

2. Add the significands (mantissas).

3. Normalize the sum, either shifting right and incrementing the exponent or shifting left and decrementing the exponent.

4. Check for Overflow or Underflow?
 - Yes: Generate exception or return error.
 - No: Proceed to the next step.

5. If still not normalized:
 - Yes: Round the significand to the appropriate number of bits. If mantissa = 0, set exponent to 0.
 - No: Done
Floating Point Addition Example

- Add the following two numbers represented in the IEEE 754 single precision format: $X = 2345.125_{10}$ represented as:

 $0 \begin{array}{c} 10001010 \end{array} 0010010100100100000000000$

 to $Y = .75_{10}$ represented as:

 $0 \begin{array}{c} 01111110 \end{array} 1000000000000000000000000$

 (1) Align binary point:
 - $Xe > Ye$ initial result exponent = $Ye = 10001010 = 138_{10}$
 - $Xe - Ye = 10001010 - 01111110 = 00000110 = 12_{10}$
 - Shift $Ym 12_{10}$ postions to the right to form $Ym 2^{Ye-Xe} = Ym 2^{-12} = 0.00000000000110000000000$

 (2) Add mantissas:
 - $Xm + Ym 2^{-12} = 1.00100101001001000000000$
 + $0.0000000000001100000000000 = 1.00100101001111000000000$

 (3) Normalize? Yes

 (4) Overflow? No. Underflow? No (5) zero result? No

 Result $0 \begin{array}{c} 10001010 \end{array} 0010010100111100000000000$
IEEE 754 Single precision Addition Notes

• If the exponents differ by more than 24, the smaller number will be shifted right entirely out of the mantissa field, producing a zero mantissa.
 – The sum will then equal the larger number.
 – Such truncation errors occur when the numbers differ by a factor of more than \(2^{24}\), which is approximately \(1.6 \times 10^7\).
 – Thus, the precision of IEEE single precision floating point arithmetic is approximately 7 decimal digits.

• Negative mantissas are handled by first converting to 2's complement and then performing the addition.
 – After the addition is performed, the result is converted back to sign-magnitude form.

• When adding numbers of opposite sign, cancellation may occur, resulting in a sum which is arbitrarily small, or even zero if the numbers are equal in magnitude.
 – Normalization in this case may require shifting by the total number of bits in the mantissa, resulting in a large loss of accuracy.

• Floating point subtraction is achieved simply by inverting the sign bit and performing addition of signed mantissas as outlined above.
Basic Floating Point Multiplication Algorithm

Assuming that the operands are already in the IEEE 754 format, performing floating point multiplication:

\[R = X \times Y = (-1)^{X_s} \times (X_m \times 2^{X_e}) \times (-1)^{Y_s} \times (Y_m \times 2^{Y_e}) \]

involves the following steps:

1. If one or both operands is equal to zero, return the result as zero, otherwise:
2. Compute the exponent of the result:
 \[\text{Result exponent} = \text{biased exponent}(X) + \text{biased exponent}(Y) - \text{bias} \]
3. Compute the sign of the result \[X_s \oplus Y_s \]
4. Compute the mantissa of the result:
 • Multiply the mantissas: \[X_m \times Y_m \]
5. Normalize if needed, by shifting mantissa right, incrementing result exponent.
6. Check result exponent for overflow/underflow:
 • If larger than maximum exponent allowed return exponent overflow
 • If smaller than minimum exponent allowed return exponent underflow
7. Round the result to the allowed number of mantissa bits; normalize if needed.
Overflow or Underflow?

1. Is one/both operands = 0?
 - Set the result to zero: exponent = 0

2. Compute exponent:
 - biased exp.(X) + biased exp.(Y) - bias

3. Compute sign of result: Xs XOR Ys

4. Multiply the mantissas

5. Normalize mantissa if needed

6. Overflow or Underflow?
 - Yes: Generate exception or return error
 - No: Round or truncate the result mantissa

7. Still Normalized?
 - Yes: Done
 - No: Round or truncate the result mantissa
Floating Point Multiplication Example

- Multiply the following two numbers represented in the IEEE 754 single precision format: X = -18 \text{_{10}} \text{ represented as:}

| 1 | 10000011 | 00100000000000000000000 |

and Y = 9.5 \text{_{10}} \text{ represented as:}

| 0 | 1000010 | 00110000000000000000000 |

1. Value of one or both operands = 0? No, continue with step 2
2. Compute the sign: S = Xs XOR Ys = 1 XOR 0 = 1
3. Multiply the mantissas: The product of the 24 bit mantissas is 48 bits with two bits to the left of the binary point:

 (01).01010110000000000000000

 Truncate to 24 bits:

 hidden \rightarrow (1).01010110000000000000000

4. Compute exponent of result:

 Xe + Ye - 127_{10} = 1000 0011 + 1000 0010 - 0111111 = 1000 0110

5. Result mantissa needs normalization? No

Result | 1 | 10000110 | 010101011000
IEEE 754 Single precision Multiplication Notes

- Rounding occurs in floating point multiplication when the mantissa of the product is reduced from 48 bits to 24 bits.
 - The least significant 24 bits are discarded.

- Overflow occurs when the sum of the exponents exceeds 127, the largest value which is defined in bias-127 exponent representation.
 - When this occurs, the exponent is set to 128 (E = 255) and the mantissa is set to zero indicating + or - infinity.

- Underflow occurs when the sum of the exponents is more negative than -126, the most negative value which is defined in bias-127 exponent representation.
 - When this occurs, the exponent is set to -127 (E = 0).
 - If M = 0, the number is exactly zero.
 - If M is not zero, then a denormalized number is indicated which has an exponent of -127 and a hidden bit of 0.
 - The smallest such number which is not zero is 2^{-149}. This number retains only a single bit of precision in the rightmost bit of the mantissa.
Basic Floating Point Division Algorithm

Assuming that the operands are already in the IEEE 754 format, performing floating point multiplication:

\[\text{Result} = R = \frac{X}{Y} = (-1)^{X_s} (X_m \times 2^{X_e}) / (-1)^{Y_s} (Y_m \times 2^{Y_e}) \]

involves the following steps:

1. If the divisor Y is zero return “Infinity”, if both are zero return “NaN”
2. Compute the sign of the result \(X_s \oplus Y_s\)
3. Compute the mantissa of the result:
 - The dividend mantissa is extended to 48 bits by adding 0's to the right of the least significant bit.
 - When divided by a 24 bit divisor \(Y_m\), a 24 bit quotient is produced.
4. Compute the exponent of the result:
 \[\text{Result exponent} = [\text{biased exponent (X) - biased exponent (Y)] + bias} \]
5. Normalize if needed, by shifting mantissa left, decrementing result exponent.
6. Check result exponent for overflow/underflow:
 - If larger than maximum exponent allowed return exponent overflow
 - If smaller than minimum exponent allowed return exponent underflow
Extra Bits for Rounding

Extra bits used to prevent or minimize rounding errors.

How many extra bits?
IEEE: As if computed the result exactly and rounded.

Addition:

\[
\begin{align*}
1.xxxxx & \quad 1.xxxxx & \quad 1.xxxxx \\
+ 1.xxxxx & \quad 0.001xxxxx & \quad 0.01xxxxx \\
1x.xxxxxy & \quad 1.xxxxxxyyy & \quad 1x.xxxxxyy
\end{align*}
\]

- **Guard Digits**: digits to the right of the first \(p \) digits of significand to guard against loss of digits – can later be shifted left into first \(P \) places during normalization.
- Addition: carry-out shifted in.
- Subtraction: borrow digit and guard.
- Multiplication: carry and guard. Division requires guard.
Rounding Digits

Normalized result, but some non-zero digits to the right of the significand --> the number should be rounded

E.g., \(B = 10, p = 3 \):

\[
\begin{array}{c|ccc}
0 & 2 & 1.69 & = 1.6900 \times 10^{2\text{-bias}} \\
- & 0 & 0 & 7.85 \\
0 & 2 & 1.61 & = 1.6115 \times 10^{2\text{-bias}}
\end{array}
\]

One round digit must be carried to the right of the guard digit so that after a normalizing left shift, the result can be rounded, according to the value of the round digit.

IEEE Standard:

four rounding modes:
- round to nearest (default)
- round towards plus infinity
- round towards minus infinity
- round towards 0

round to nearest:

- round digit < \(B/2 \) then truncate
- \(B/2 \) then round up (add 1 to ULP: unit in last place)
- \(B/2 \) then round to nearest even digit

it can be shown that this strategy minimizes the mean error introduced by rounding.
Sticky Bit

Additional bit to the right of the round digit to better fine tune rounding.

\[
d0 \ . \ d1 \ d2 \ d3 \ldots \ dp-1 \ 0 \ 0 \ 0 \\
0 \ . \ 0 \ 0 \ X \ldots \ X \ X X \ S \\
XXS
\]

Sticky bit: set to 1 if any 1 bits fall off the end of the round digit

\[
d0 \ . \ d1 \ d2 \ d3 \ldots \ dp-1 \ 0 \ 0 \ 0 \\
0 \ . \ 0 \ 0 \ X \ldots \ X \ X X \ 0
\]
generates a borrow

\[
d0 \ . \ d1 \ d2 \ d3 \ldots \ dp-1 \ 0 \ 0 \ 0 \\
0 \ . \ 0 \ 0 \ X \ldots \ X \ X X \ 1
\]

Rounding Summary:

Radix 2 minimizes wobble in precision.

Normal operations in +,-,*,/ require one carry/borrow bit + one guard digit.

One round digit needed for correct rounding.

Sticky bit needed when round digit is B/2 for max accuracy.

Rounding to nearest has mean error = 0 if uniform distribution of digits are assumed.
Infinity and NaNs

Result of operation *overflows*, i.e., is larger than the largest number that can be represented.

Overflow is not the same as divide by zero (raises a different exception).

\[+/\text{- infinity} \quad S\ 1\ldots1\ 0\ldots0 \]

It may make sense to do further computations with infinity:
e.g., \(X/0 \) > \(Y \) may be a valid comparison

Not a number, but not infinity (e.g. \(\sqrt{-4} \))
invalid operation exception (unless operation is = or =)

\[\text{NaN} \quad S\ 1\ldots1\ \text{non-zero} \]

HW decides what goes here

NaNs propagate: \(f(\text{NaN}) = \text{NaN} \)