Computer System Components

CPU Core
- 1 GHz - 3.6 GHz
- 4-way Superscaler
- RISC or RISC-core (x86):
 - Deep Instruction Pipelines
 - Dynamic scheduling
 - Multiple FP, integer FUs
 - Dynamic branch prediction
 - Hardware speculation

SDRAM
- PC100/PC133
- 100-133MHz
- 64-128 bits wide
- 2-way interleaved
- ~ 900 MBYTES/SEC (64bit)

Current Standard
- Double Date Rate (DDR) SDRAM
- PC3200
- 200 MHz DDR
- 64-128 bits wide
- 4-way interleaved
- ~3.2 GBYTES/SEC
- (one 64bit channel)
- ~6.4 GBYTES/SEC
- (two 64bit channels)

RAMbus DRAM (RDRAM)
- 400 MHz DDR
- 16 bits wide (32 banks)
- ~ 1.6 GBYTES/SEC

CPU

Caches
- L1 16-128K 1-2 way set associative (on chip), separate or unified
- L2 256K-2M 4-32 way set associative (on chip) unified
- L3 2-16M 8-32 way set associative (off or on chip) unified

Examples:
- Alpha, AMD K7: EV6, 200-400 MHz
- Intel PII, PIII: GTL+ 133 MHz
- Intel P4 800 MHz

System Bus = CPU-Memory Bus = Front Side Bus (FSB)

I/O Devices:
- Disks
- Displays
- Keyboards

Controller

Memory Controller

Memory Bus

Memory

North Bridge

South Bridge

Chipset

Off or On-chip

L1

L2

L3

Examples: PCI, 33-66MHz
- 32-64 bits wide
- 133-528 MBYTES/SEC
- PCI-X 133MHz 64 bit
- 1024 MBYTES/SEC

NICs

Networks

I/O Buses

Example: PCI-X 133MHz 64 bit

All Non-blocking caches

System Bus

CPU

Input/Output Devices

Control

Memory

Chipset

North Bridge

South Bridge
The Memory Hierarchy

• The Motivation for The Memory Hierarchy:
 – CPU/Memory Performance Gap
 – The Principle Of Locality

• Cache Concepts:
 – Organization, Replacement, write strategies
 – Cache Performance Evaluation: Memory Access Tree
 – Multi-Level Caches

• Classification Steady-State Cache Misses: *The Three C’s of cache Misses*:

• Techniques To Improve Cache Performance:
 • Reduce Miss Rate
 • Reduce Cache Miss Penalty
 • Reduce Cache Hit Time

• Main Memory:
 – Performance Metrics: Latency & Bandwidth
 • Key DRAM Timing Parameters
 – DRAM System Memory Generations
 – Basic Memory Bandwidth Improvement Techniques

• Virtual Memory
 • Benefits, Issues/Strategies
 • Basic Virtual → Physical Address Translation: Page Tables
 • Speeding Up Address Translation: Translation Lookaside Buffer (TLB)
A Typical Memory Hierarchy

Faster
Larger Capacity

Processor

Control

Datapath

 Registers

Level One Cache (L_1)

Second Level Cache (SRAM) L_2

Main Memory (DRAM)

Virtual Memory, Secondary Storage (Disk)

Tertiary Storage (Tape)

Speed (ns):

< 1s

10s

100s

10,000,000s (10s ms)

10,000,000,000s (10s sec)

Size (bytes):

100s

Ks

Ms

Gs

Ts
Main Memory

- Main memory generally utilizes Dynamic RAM (DRAM), which use a single transistor to store a bit, but require a periodic data refresh by reading every row increasing cycle time.
- Static RAM may be used for main memory if the added expense, low density, high power consumption, and complexity is feasible (e.g. Cray Vector Supercomputers).
- Main memory performance is affected by:
 - **Memory latency**: Affects cache miss penalty, M. Measured by:
 - **Memory Access time**: The time it takes between a memory access request is issued to main memory and the time the requested information is available to cache/CPU.
 - **Memory Cycle time**: The minimum time between requests to memory (greater than access time in DRAM to allow address lines to be stable)
 - **Peak Memory bandwidth**: The maximum sustained data transfer rate between main memory and cache/CPU.
 - In current memory technologies (e.g Double Data Rate SDRAM) published peak memory bandwidth does not take account most of the memory access latency.
 - This leads to achievable realistic memory bandwidth < peak memory bandwidth

(In Chapter 5.8 - 5.10)
Four Key DRAM Timing Parameters

- **t_{RAC}:** Minimum time from RAS (Row Access Strobe) line falling (activated) to the valid data output.
 - Used to be quoted as the nominal speed of a DRAM chip
 - For a typical 64Mb DRAM $t_{\text{RAC}} = 60$ ns

- **t_{RC}:** Minimum time from the start of one row access to the start of the next (memory cycle time).
 - $t_{\text{RC}} = t_{\text{RAC}} + \text{RAS Precharge Time}$
 - $t_{\text{RC}} = 110$ ns for a 64Mbit DRAM with a t_{RAC} of 60 ns

- **t_{CAC}:** Minimum time from CAS (Column Access Strobe) line falling to valid data output.
 - 12 ns for a 64Mbit DRAM with a t_{RAC} of 60 ns

- **t_{PC}:** Minimum time from the start of one column access to the start of the next.
 - $t_{\text{PC}} = t_{\text{CAC}} + \text{CAS Precharge Time}$
 - About 25 ns for a 64Mbit DRAM with a t_{RAC} of 60 ns
Simplified DRAM Speed Parameters

• Row Access Strobe (RAS)Time: (similar to t_{RAC}):
 – Minimum time from RAS (Row Access Strobe) line falling (activated) to the first valid data output.
 – A major component of memory latency.
 – Only improves ~ 5% every year.

• Column Access Strobe (CAS) Time/data transfer time: (similar to t_{CAC})
 – The minimum time required to read additional data by changing column address while keeping the same row address.
 – Along with memory bus width, determines peak memory bandwidth.

 • E.g For SDRAM Peak Memory Bandwidth = Bus Width /(0.5 x t_{CAC})
 For PC100 SDRAM Memory bus width = 8 bytes $t_{CAC} = 20$ns
 Peak Bandwidth = 8 x 100x$10^6 = 800 \times 10^6$ bytes/sec
DRAM Generations

<table>
<thead>
<tr>
<th>Year</th>
<th>Size</th>
<th>RAS (ns)</th>
<th>CAS (ns)</th>
<th>Cycle Time</th>
<th>Memory Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1980</td>
<td>64 Kb</td>
<td>150-180</td>
<td>75</td>
<td>250 ns</td>
<td>Page Mode</td>
</tr>
<tr>
<td>1983</td>
<td>256 Kb</td>
<td>120-150</td>
<td>50</td>
<td>220 ns</td>
<td>Page Mode</td>
</tr>
<tr>
<td>1986</td>
<td>1 Mb</td>
<td>100-120</td>
<td>25</td>
<td>190 ns</td>
<td>Fast Page Mode</td>
</tr>
<tr>
<td>1989</td>
<td>4 Mb</td>
<td>80-100</td>
<td>20</td>
<td>165 ns</td>
<td>Fast Page Mode</td>
</tr>
<tr>
<td>1992</td>
<td>16 Mb</td>
<td>60-80</td>
<td>15</td>
<td>120 ns</td>
<td>EDO</td>
</tr>
<tr>
<td>1996</td>
<td>64 Mb</td>
<td>50-70</td>
<td>12</td>
<td>110 ns</td>
<td>PC66 SDRAM</td>
</tr>
<tr>
<td>1998</td>
<td>128 Mb</td>
<td>50-70</td>
<td>10</td>
<td>100 ns</td>
<td>PC100 SDRAM</td>
</tr>
<tr>
<td>2000</td>
<td>256 Mb</td>
<td>45-65</td>
<td>7</td>
<td>90 ns</td>
<td>PC133 SDRAM</td>
</tr>
<tr>
<td>2002</td>
<td>512 Mb</td>
<td>40-60</td>
<td>5</td>
<td>80 ns</td>
<td>PC2700 DDR SDRAM</td>
</tr>
</tbody>
</table>

(8000:1) \((\text{Capacity})\) \hspace{1cm} (15:1) \ ((\sim \text{bandwidth})) \hspace{1cm} (3:1) \ ((\text{Latency})\)
Simplified Asynchronous DRAM Read Timing

Memory Cycle Time = tRC = tRAC + RAS Precharge Time

- **tRAC**: Minimum time from RAS (Row Access Strobe) line falling to the valid data output.
- **tRC**: Minimum time from the start of one row access to the start of the next (memory cycle time).
- **tCAC**: Minimum time from CAS (Column Access Strobe) line falling to valid data output.
- **tPC**: Minimum time from the start of one column access to the start of the next.

Memory Bandwidth = Memory bus width / Memory cycle time

Source: http://arstechnica.com/paedia/r/ram_guide/ram_guide.part2-1.html
Page Mode DRAM (Early 80s)

- Regular DRAM Organization:
 - N rows x N column x M-bit
 - Read & Write M-bit at a time
 - Each M-bit access requires a RAS / CAS cycle
Fast Page Mode DRAM (late 80s)

- Fast Page Mode DRAM
 - $N \times M$ “SRAM” to save a row

- After a row is read into the register
 - Only CAS is needed to access other M-bit blocks on that row
 - RAS_L remains asserted while CAS_L is toggled
 - The first “burst mode” DRAM

A read burst of length 4 shown
Typical timing at 66 MHz: \(5\)-\(3\)-\(3\)-\(3\) (burst of length 4)
For bus width = 64 bits = 8 bytes cache block size = 32 bytes
It takes \(5+3+3+3 = 14\) memory cycles or \(15 \text{ ns} \times 14 = 210 \text{ ns}\) to read 32 byte block
Read Miss penalty for CPU running at 1 GHz \(=M = 15 \times 14 = 210\) CPU cycles
Extended Data Out DRAM operates in a similar fashion to Fast Page Mode DRAM except putting data from one read on the output pins at the same time the column address for the next read is being latched in.

EDO Read Timing

- **EDO DRAM speed rated using tRAC ~ 40-60ns**

Typical timing at 66 MHz: 5-2-2-2 (burst of length 4)

- For bus width = 64 bits = 8 bytes
 - Max. Bandwidth = \(8 \times 66 / 2 = 264 \text{ Mbytes/sec}\)
- It takes = 5+2+2+2 = 11 memory cycles or \(15 \text{ ns} \times 11 = 165 \text{ ns}\) to read 32 byte cache block
- Minimum Read Miss penalty for CPU running at 1 GHz = \(11 \times 15 = 165 \text{ CPU cycles}\)

Source: http://arstechnica.com/paedia/r/ram_guide/ram_guide.part2-1.html
Synchronous DRAM Interface

Characteristics Summary

<table>
<thead>
<tr>
<th>Peak Bandwidth (Latency not taken into account)</th>
<th>SDRAM</th>
<th>DDR (Double Data Rate) SDRAM</th>
<th>RAMbus</th>
</tr>
</thead>
<tbody>
<tr>
<td>PC100</td>
<td>0.8 GB/s</td>
<td>2.133 GB/s (Similar to PC3200)</td>
<td>1.6 GB/s</td>
</tr>
<tr>
<td>DDR266 (PC2100)</td>
<td>.1 x 8 = .8</td>
<td>.2 x 2 x 8 = 3.2</td>
<td>.4 x 2 x 2 = 1.6</td>
</tr>
<tr>
<td>DDR2 (Mid 2004)</td>
<td>3.2 GB/s</td>
<td>16(18) data</td>
<td></td>
</tr>
<tr>
<td>DRDRAM</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Interface</th>
<th>64(72) data</th>
<th>64(72) data</th>
<th>64(72) data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Signals</td>
<td>168 pins</td>
<td>168 pins</td>
<td>184 pins</td>
</tr>
<tr>
<td>Frequency</td>
<td>100 MHz</td>
<td>133 MHz</td>
<td>200 MHz</td>
</tr>
<tr>
<td></td>
<td>400MHz</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Latency Range</th>
<th>30-90 nS</th>
<th>18.8-64 nS</th>
<th>17.5-42.6 nS</th>
</tr>
</thead>
<tbody>
<tr>
<td># of Banks per DRAM Chip</td>
<td>2</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>32</td>
</tr>
</tbody>
</table>

The latencies given only account for memory module latency and do not include memory controller latency or other address/data line delays. Thus realistic access latency is longer.
Synchronous Dynamic RAM, (SDRAM) (mid 90s)

Organization

SDRAM speed is rated at max. clock speed supported:
- 100MHZ = PC100
- 133MHZ = PC133

DDR SDRAM (late 90s - current)

organization is similar but four banks are used in each DDR SDRAM chip instead of two.

Data transfer on both rising and falling edges of the clock

DDR SDRAM rated by maximum memory bandwidth
- PC3200 = 8 bytes x 200 MHz x 2 = 3200 Mbytes/sec

SDRAM Peak Memory Bandwidth = Bus Width / (0.5 x tCAC)
SDRAM Peak Memory Bandwidth = Bus Width x Clock rate x 2

DDR SDRAM Peak Memory Bandwidth = Bus Width / (0.25 x tCAC)
DDR SDRAM Peak Memory Bandwidth = Bus Width x Clock rate x 2
SDRAM Read Timing

SDRAM Read Timing

SDRAM

Typical timing at 133 MHz (PC133 SDRAM) : 5-1-1-1
For bus width = 64 bits = 8 bytes
Max. Bandwidth = 133 x 8 = 1064 Mbytes/sec
It takes = 5+1+1+1 = 8 memory cycles or 7.5 ns x 8 = 60 ns to read 32 byte cache block
Minimum Read Miss penalty for CPU running at 1 GHz = M = 7.5 x 6 = 49 CPU cycles

In this example for SDRAM: M = 60 cycles for DDR SDRAM: M = 49 cycles
Thus accounting for access latency DDR is 60/49 = 1.22 times faster
Not twice as fast (2128/1064 = 2) as indicated by peak bandwidth!
Basic Memory Bandwidth Improvement Techniques

• **Wider Main Memory:**
 Memory bus width is increased to a number of words (usually up to the size of a cache block).
 ⇒ Memory bandwidth is proportional to memory bus width.
 e.g. Doubling the width of cache and memory doubles potential memory bandwidth available to the CPU.

• **Interleaved (Multi-Bank) Memory:**
 Memory is organized as a number of independent banks.
 – Multiple interleaved memory reads or writes are accomplished by sending memory addresses to several memory banks at once.
 – **Interleaving factor:** Refers to the mapping of memory addressees to memory banks. Goal reduce bank conflicts.
 e.g. using 4 banks (width one word), bank 0 has all words whose address is:

 \[(\text{word address mod} \ 4) = 0\]
Three examples of bus width, memory width, and memory interleaving to achieve higher memory bandwidth

Simplest design:
Everything is the width of one word (lowest performance)

Wider memory, bus and cache (highest performance)

Narrow bus and cache with interleaved memory banks

Front Side Bus (FSB) = System Bus = CPU-memory Bus
Memory Bank Interleaving

Can be applied at: 1- DRAM chip level (e.g., SDRAM, DDR) 2- DRAM module level 3- DRAM channel level

Access Pattern without Interleaving: (One Bank)

- Memory Bank Cycle Time
- D1 available
- Start Access for D1
- Start Access for D2

Pipeline access to different memory banks to increase effective bandwidth

Access Pattern with 4-way Interleaving:

- Memory Bank Cycle Time
- Access Bank 0
- Access Bank 1
- Access Bank 2
- Access Bank 3

We can Access Bank 0 again

Number of banks \geq Number of cycles to access word in a bank

Bank interleaving does not reduce latency of accesses to the same bank
Memory Width, Interleaving: Performance Example

Given the following system parameters with single unified cache level L_1 (ignoring write policy):

- Block size = 1 word
- Memory bus width = 1 word
- Miss rate = 3%
- $M = \text{Miss penalty} = 32$ cycles
 - (4 cycles to send address, 24 cycles access time, 4 cycles to send a word)
- Memory access/instruction = 1.2
- $\text{CPI}_{\text{execution}}$ (ignoring cache misses) = 2

Miss rate (block size = 2 word = 8 bytes) = 2%
Miss rate (block size = 4 words = 16 bytes) = 1%

• The CPI of the base machine with 1-word blocks = $2 + (1.2 \times 0.03 \times 32) = 3.15$

Increasing the block size to two words (64 bits) gives the following CPI:

- 32-bit bus and memory, no interleaving, $M = 2 \times 32 = 64$ cycles, $\text{CPI} = 2 + (1.2 \times 0.02 \times 64) = 3.54$
- 32-bit bus and memory, interleaved, $M = 4 + 24 + 8 = 36$ cycles, $\text{CPI} = 2 + (1.2 \times 0.02 \times 36) = 2.86$
- 64-bit bus and memory, no interleaving, $M = 32$ cycles, $\text{CPI} = 2 + (1.2 \times 0.02 \times 32) = 2.77$

Increasing the block size to four words (128 bits); resulting CPI:

- 32-bit bus and memory, no interleaving, $M = 4 \times 32 = 128$ cycles, $\text{CPI} = 2 + (1.2 \times 0.01 \times 128) = 3.54$
- 32-bit bus and memory, interleaved, $M = 4 + 24 + 16 = 44$ cycles, $\text{CPI} = 2 + (1.2 \times 0.01 \times 44) = 2.53$
- 64-bit bus and memory, no interleaving, $M = 2 \times 32 = 64$ cycles, $\text{CPI} = 2 + (1.2 \times 0.01 \times 64) = 2.77$
- 64-bit bus and memory, interleaved, $M = 4 + 24 + 8 = 36$ cycles, $\text{CPI} = 2 + (1.2 \times 0.01 \times 36) = 2.43$
- 128-bit bus and memory, no interleaving, $M = 32$ cycles, $\text{CPI} = 2 + (1.2 \times 0.01 \times 32) = 2.38$
Three-Level Cache Example

- CPU with CPI\textsubscript{execution} = 1.1 running at clock rate = 500 MHz
- 1.3 memory accesses per instruction.
- L\textsubscript{1} cache operates at 500 MHz with a miss rate of 5%.
- L\textsubscript{2} cache operates at 250 MHz with a local miss rate 40%, (T\textsubscript{2} = 2 cycles).
- L\textsubscript{3} cache operates at 100 MHz with a local miss rate 50%, (T\textsubscript{3} = 5 cycles).
- Memory access penalty, M = 100 cycles. Find CPI.

With No Cache, CPI = 1.1 + 1.3 \times 100 = 131.1

With single L\textsubscript{1}, CPI = 1.1 + 1.3 \times 0.05 \times 100 = 7.6

With L\textsubscript{1}, L\textsubscript{2} CPI = 1.1 + 1.3 \times (0.05 \times 0.6 \times 2 + 0.05 \times 0.4 \times 100) = 3.778

CPI = CPI\textsubscript{execution} + Mem Stall cycles per instruction

Mem Stall cycles per instruction = Mem accesses per instruction \times Stall cycles per access

Stall cycles per memory access = (1-H\textsubscript{1}) \times H\textsubscript{2} \times T\textsubscript{2} + (1-H\textsubscript{1}) \times (1-H\textsubscript{2}) \times H\textsubscript{3} \times T\textsubscript{3} + (1-H\textsubscript{1})(1-H\textsubscript{2})(1-H\textsubscript{3}) \times M

= 0.05 \times 0.6 \times 2 + 0.05 \times 0.4 \times 0.5 \times 5 + 0.05 \times 0.4 \times 0.5 \times 100

= 0.097 + 0.0075 + 0.00225 = 1.11

CPI = 1.1 + 1.3 \times 1.11 = 2.54

Speedup compared to L\textsubscript{1} only = 7.6/2.54 = 3

Speedup compared to L\textsubscript{1}, L\textsubscript{2} = 3.778/2.54 = 1.49

Repeated here from lecture 8
3-Level (All Unified) Cache Performance
Memory Access Tree (Ignoring Write Policy)
CPU Stall Cycles Per Memory Access

CPU Memory Access

L1 Hit:
Stalls = H1 x 0 = 0
(No Stall)

L1 Miss:
% = (1 - H1)

L2 Hit:
(1 - H1) x H2 x T2

L2 Miss:
% = (1 - H1)(1 - H2)

L3 Hit:
(1 - H1)(1 - H2) x H3 x T3

L3 Miss:
(1 - H1)(1 - H2)(1 - H3) x M

To Main Memory

Stall cycles per memory access = (1 - H1) x H2 x T2 + (1 - H1)(1 - H2) x H3 x T3 + (1 - H1)(1 - H2)(1 - H3) x M

AMAT = 1 + Stall cycles per memory access

Repeated here from lecture 8
Program Steady-State Main Memory Bandwidth-Usage Example

- In the previous example with three levels of cache (all unified, ignore write policy)
- CPU with \(CPI_{\text{execution}} = 1.1 \) running at clock rate = 500 MHz
- 1.3 memory accesses per instruction.
- \(L_1 \) cache operates at 500 MHz with a miss rate of 5%
- \(L_2 \) cache operates at 250 MHz with a local miss rate 40%, \(T_2 = 2 \) cycles
- \(L_3 \) cache operates at 100 MHz with a local miss rate 50%, \(T_3 = 5 \) cycles
- Memory access penalty, \(M = 100 \) cycles (to deliver 32 bytes to CPU)

- We found the CPI:
 - With No Cache, \(CPI = 1.1 + 1.3 \times 100 = 131.1 \)
 - With single \(L_1 \), \(CPI = 1.1 + 1.3 \times 0.05 \times 100 = 7.6 \)
 - With \(L_1, L_2 \) \(CPI = 1.1 + 1.3 \times (0.05 \times 0.6 \times 2 + 0.05 \times 0.4 \times 100) = 3.778 \)
 - With \(L_1, L_2, L_3 \) \(CPI = 1.1 + 1.3 \times 1.11 = 2.54 \)

Assuming:
 - instruction size = data size = 4 bytes, all cache blocks are 32 bytes

For each of the three cases with cache:
 - What is the total number of memory accesses generated by the CPU per second?
 - What is the percentage of these memory accesses satisfied by main memory?
 - Percentage of main memory bandwidth used by the CPU?
Program Steady-State Main Memory Bandwidth-Usage Example

- Memory requires 100 CPU cycles = 200 ns to deliver 32 bytes, thus total main memory bandwidth = 32 bytes / (200 ns) = 160 x 10^6 bytes/sec

- The total number of memory accesses generated by the CPU per second = (memory access/instruction) x clock rate / CPI = 1.3 x 500 x 10^6 / CPI = 650 x 10^6 / CPI
 - With single L1 = 650 x 10^6 / 7.6 = 85 x 10^6 accesses/sec
 - With L1, L2 = 650 x 10^6 / 3.778 = 172 x 10^6 accesses/sec
 - With L1, L2, L3 = 650 x 10^6 / 2.54 = 255 x 10^6 accesses/sec

- The percentage of these memory accesses satisfied by main memory:
 - With single L1 = L1 miss rate = 5%
 - With L1, L2 = L1 miss rate x L2 miss rate = .05 x .4 = 2%
 - With L1, L2, L3 = L1 miss rate x L2 miss rate x L3 miss rate = .05 x .4 x .5 = 1%

- Memory Bandwidth used
 - With single L1 = 32 bytes x 85x10^6 accesses/sec x .05 = 136 x10^6 bytes/sec or 136/160 = 85 % of total memory bandwidth
 - With L1, L2 = 32 bytes x 172 x10^6 accesses/sec x .02 = 110 x10^6 bytes/sec or 110/160 = 69 % of total memory bandwidth
 - With L1, L2, L3 = 32 bytes x 255 x10^6 accesses/sec x .01 = 82 x10^6 bytes/sec or 82/160 = 51 % of total memory bandwidth

Similarly the percentage of CPU memory accesses satisfied by a cache level and percentage of bandwidth used for each cache level can be estimated
Dual (64-bit) Channel PC3200 DDR SDRAM has a theoretical peak bandwidth of $400 \text{ MHz} \times 8 \text{ bytes} \times 2 = 6400 \text{ MB/s}$

Is memory bandwidth still an issue?

Source: The Tech Report 1-21-2004
PC3200 DDR SDRAM has a theoretical latency range of 18-40 ns (not accounting for memory controller latency or other address/data line delays).

Is memory latency still an issue?

X86 CPU Cache/Memory Performance Example:
AMD Athlon XP/64/FX Vs. Intel P4/Extreme Edition

Main Memory: Dual (64-bit) Channel PC3200 DDR SDRAM
peak bandwidth of 6400 MB/s

Source: The Tech Report 1-21-2004
X86 CPU Cache/Memory Performance Example

AMD Athlon T-Bird Vs. Intel PIII (Just for historic purposes:)

AMD Athlon T-Bird 1GHZ
L1: 64K INST, 64K DATA (3 cycle latency), both 2-way
L2: 256K 16-way 64 bit bus
Latency: 7 cycles
L1, L2 on-chip

Intel PIII GHZ
L1: 16K INST, 16K DATA (3 cycle latency), both 2-way
L2: 256K 8-way 256 bit, Latency: 7 cycles
L1, L2 on-chip (32 byte blocks)

Main Memory:

PC2100
133MHZ DDR SDRAM 64bit
Peak bandwidth: 2100 MB/s
Latency Range: 19ns - 64ns

PC133
133MHZ SDRAM 64bit
Peak bandwidth: 1000 MB/s
Latency Range: 25ns - 80ns

PC800
Rambus DRDRAM
400 MHZ DDR 16-bit
Peak bandwidth: 1600 MB/s
(1 channel)
Latency Range: 35ns - 80ns

Intel 840 uses two PC800 channels
X86 CPU Cache/Memory Performance Example:
AMD Athlon T-Bird Vs. Intel PIII, Vs. P4

AMD Athlon T-Bird 1GHz
L1: 64K INST, 64K DATA (3 cycle latency), both 2-way
L2: 256K 16-way 64 bit bus
 Latency: 7 cycles
 L1,L2 on-chip

Intel P4, 1.5 GHz
L1: 8K DATA (2 cycle latency)
 4-way 64 byte blocks
 96KB Execution Trace Cache
L2: 256K 8-way 256 bit bus, 128 byte blocks
 Latency: 7 cycles
 L1,L2 on-chip

Intel PIII 1 GHz
L1: 16K INST, 16K DATA (3 cycle latency)
 both 2-way 32 byte blocks
L2: 256K 8-way 256 bit bus
 Latency: 7 cycles
 L1,L2 on-chip