Parallel Programming for Performance

A process of Successive Refinement

• Partitioning for Performance:
 – Load Balancing and Synch Wait Time Reduction
 – Identifying & Managing Concurrency
 • Static Vs. Dynamic Assignment
 • Determining Optimal Task Granularity
 • Reducing Serialization
 – Reducing Inherent Communication
 • Minimizing communication to computation ratio
 – Efficient Domain Decomposition
 – Reducing Additional Overheads

• Extended Memory-Hierarchy View of Multiprocessors
 – Exploiting Spatial Locality
 – Structuring Communication
 • Reducing Contention
 • Overlapping Communication
Successive Refinement

Partitioning is often independent of architecture, and may be done first:

– View machine as a collection of communicating processors
 • Balancing the workload.
 • Reducing the amount of inherent communication
 • Reducing extra work.
– Above three issues are conflicting.

Then deal with interactions with architecture:

– View machine as an extended memory hierarchy
 • Extra communication due to architectural interactions.
 • Cost of communication depends on how it is structured
– This may inspire changes in partitioning.
Partitioning for Performance

• Balancing the workload and reducing wait time at synch points
• Reducing inherent communication.
• Reducing extra work.

These algorithmic issues have extreme trade-offs:
 – Minimize communication => run on 1 processor.
 => extreme load imbalance.
 – Maximize load balance => random assignment of tiny tasks.
 => no control over communication.
 – Good partition may imply extra work to compute or manage it

• The goal is to compromise between the above extremes
 – Fortunately, often not difficult in practice.
Load Balancing and Synch Wait Time Reduction

Limit on speedup:

\[Speedup_{\text{problem}}(p) \leq \frac{\text{Sequential Work}}{\text{Max Work on any Processor}} \]

- Work includes data access and other costs.
- Not just equal work, but must be busy at the same time.

Four parts to load balancing and reducing synch wait time:

1. Identify enough concurrency.
2. Decide how to manage it.
3. Determine the granularity at which to exploit it.
4. Reduce serialization and cost of synchronization.
Identifying Concurrency

- Techniques seen for equation solver:
 - Loop structure, fundamental dependences, new algorithms
- *Data Parallelism* versus *Function Parallelism*
- Often see orthogonal levels of parallelism; e.g. VLSI routing

![Diagram showing wire and segment expansion](image)
Identifying Concurrency (continued)

Function parallelism:

- Entire large tasks (procedures) that can be done in parallel on same or different data.

 e.g. different independent grid computations in Ocean.
- Pipelining, as in video encoding/decoding, or polygon rendering.
- Degree usually modest and does not grow with input size
- Difficult to load balance.
- Often used to reduce synch between data parallel phases.

Most scalable programs: Data parallel

(per this loose definition)

- Function parallelism reduces synch between data parallel phases.
Managing Concurrency

Static versus Dynamic techniques

Static:
- Algorithmic assignment based on input; won’t change
- Low runtime overhead
- Computation must be predictable
- Preferable when applicable (except in multiprogrammed/heterogeneous environment)

Dynamic:
- Adapt at runtime to balance load
- Can increase communication and reduce locality
- Can increase task management overheads
Dynamic Assignment

Profile-based (semi-static):

- Profile work distribution at runtime, and repartition dynamically
- Applicable in many computations, e.g. Barnes-Hut, some graphics

Dynamic Tasking:

- Deal with unpredictability in program or environment (e.g. Raytrace)
 - Computation, communication, and memory system interactions
 - Multiprogramming and heterogeneity
 - Used by runtime systems and OS too
- Pool of tasks; take and add tasks until done
- E.g. “self-scheduling” of loop iterations (shared loop counter)
Dynamic Tasking with Task Queues

Centralized versus distributed queues.

Task stealing with distributed queues.
- Can compromise communication and locality, and increase synchronization.
- Whom to steal from, how many tasks to steal, ...
- Termination detection
- Maximum imbalance related to size of task
Impact of Dynamic Assignment

On SGI Origin 2000 (cache-coherent shared memory):

![Graphs showing speedup vs number of processors for different assignment strategies.](image-url)
Determining Task Granularity

Recall that task granularity:

Amount of work associated with a task.

General rule:

– Coarse-grained => often less load balance
– Fine-grained => more overhead; often more communication, contention

Comm., contention actually affected by assignment, not size
– Overhead by size itself too, particularly with task queues
Reducing Serialization

Careful assignment and orchestration (including scheduling)

Event synchronization:

- Reduce use of conservative synchronization
 - e.g. point-to-point instead of barriers, or granularity of pt-to-pt
- But fine-grained synch more difficult to program, more synch operations.

Mutual exclusion:

- Separate locks for separate data
 - e.g. locking records in a database: lock per process, record, or field
 - Lock per task in task queue, not per queue
 - Finer grain => less contention/serialization, more space, less reuse
- Smaller, less frequent critical sections
 - No reading/testing in critical section, only modification
 - e.g. searching for task to dequeue in task queue, building tree
- Stagger critical sections in time
Implications of Load Balancing

Extends speedup limit expression to:

\[Speedup_{problem}(p) \leq \frac{\text{Sequential Work}}{\text{Max} (\text{Work} + \text{Synch Wait Time})} \]

Generally, responsibility of software

Architecture can support task stealing and synch efficiently

- **Fine-grained communication, low-overhead access** to queues
 - Efficient support allows smaller tasks, better load balancing
- **Naming** logically shared data in the presence of task stealing
 - Need to access data of stolen tasks, esp. multiply-stolen tasks
 - \(\Rightarrow \) Hardware shared address space advantageous
- Efficient support for point-to-point communication
Reducing Inherent Communication

Measure: communication to computation ratio

Focus here is on inherent communication
 – Determined by assignment of tasks to processes
 – Actual communication can be greater

• Assign tasks that access same data to same process
• Optimal solution to reduce communication and achieve an optimal load balance is NP-hard in the general case
• Simple heuristic solutions work well in practice:
 – Due to specific structure of applications.
Domain Decomposition

- Works well for scientific, engineering, graphics, ... applications
- Exploits the local-biased nature of physical problems
 - Information requirements often short-range
 - Or long-range but fall off with distance
- Simple example: Nearest-neighbor grid computation

Perimeter to Area comm-to-comp ratio (area to volume in 3-d)
 - Depends on n,p: decreases with n, increases with p
Domain Decomposition (continued)

Best domain decomposition depends on information requirements

Nearest neighbor example: block versus strip decomposition:

Comm to comp: \(\frac{4^n p}{n} \) for block, \(\frac{2^n p}{n} \) for strip

Retain block from here on

Application dependent: strip may be better in other cases

E.g. particle flow in tunnel
Finding a Domain Decomposition

• Static, by inspection:
 – Must be predictable: grid example above, and Ocean

• Static, but not by inspection:
 – Input-dependent, require analyzing input structure
 – E.g. sparse matrix computations, data mining

• Semi-static (periodic repartitioning)
 – Characteristics change but slowly; e.g. Barnes-Hut

• Static or semi-static, with dynamic task stealing
 – Initial decomposition, but highly unpredictable; e.g. ray tracing
Other Partitioning Techniques
Scatter Decomposition, e.g. initial partition in Raytrace

<table>
<thead>
<tr>
<th>12</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Domain decomposition

Preserve locality in task stealing
- Steal large tasks for locality, steal from same queues, ...
Implications of Communication-to-Computation Ratio

- Architects must examine application needs
- If denominator is execution time, ratio gives average BW needs
- If operation count, gives extremes in impact of latency and bandwidth
 - Latency: assume no latency hiding
 - Bandwidth: assume all latency hidden
 - Reality is somewhere in between

- Actual impact of communication depends on structure and cost as well:
 \[
 \text{Speedup} \leq \frac{\text{Sequential Work}}{\max (\text{Work} + \text{Synch Wait Time} + \text{Comm Cost})}
 \]
 - Need to keep communication balanced across processors as well.
Reducing Extra Work (Overheads)

- Common sources of extra work:
 - Computing a good partition
e.g. partitioning in Barnes-Hut or sparse matrix
 - Using redundant computation to avoid communication
 - Task, data and process management overhead
 - Applications, languages, runtime systems, OS
 - Imposing structure on communication
 - Coalescing messages, allowing effective naming

- Architectural Implications:
 - Reduce need by making communication and orchestration efficient

\[
\text{Speedup} \leq \frac{\text{Sequential Work}}{\text{Max} (\text{Work} + \text{Synch Wait Time} + \text{Comm Cost} + \text{Extra Work})}
\]
Summary of Parallel Algorithms Analysis

• Requires characterization of multiprocessor system and algorithm
• Historical focus on algorithmic aspects: partitioning, mapping
• PRAM model: data access and communication are free
 – Only load balance (including serialization) and extra work matter
 Speedup \leq \frac{\text{Sequential Instructions}}{\text{Max (Instructions + Synch Wait Time + Extra Instructions)}}

 – Useful for early development, but unrealistic for real performance
 – Ignores communication and also the imbalances it causes
 – Can lead to poor choice of partitions as well as orchestration
 – More recent models incorporate communication costs; BSP, LogP, ...
Limitations of Parallel Algorithm Analysis

• Inherent communication in parallel algorithm is not the only communication present:
 – Artifactual communication caused by program implementation and architectural interactions can even dominate.
 – Thus, actual amount of communication may not be dealt with adequately
• Cost of communication determined not only by amount:
 – Also how communication is structured
 – …. and cost of communication in system
• Both architecture-dependent, and addressed in orchestration step.
Extended Memory-Hierarchy View of Multiprocessors

• Levels in extended hierarchy:
 – Registers, caches, local memory, remote memory (topology)
 – Glued together by communication architecture
 – Levels communicate at a certain granularity of data transfer

• Need to exploit spatial and temporal locality in hierarchy
 – Otherwise extra communication may also be caused
 – Especially important since communication is expensive
Extended Hierarchy

• Idealized view: local cache hierarchy + single main memory
• But reality is more complex:
 – Centralized Memory: caches of other processors
 – Distributed Memory: some local, some remote; + network topology
 – Management of levels:
 • Caches managed by hardware
 • Main memory depends on programming model
 – SAS: data movement between local and remote transparent
 – Message passing: explicit
 – Improve performance through architecture or program locality
 – Tradeoff with parallelism; need good node performance and parallelism
Artifactual Communication in Extended Hierarchy

Accesses not satisfied in local portion cause communication

- Inherent communication, implicit or explicit, causes transfers
 - Determined by program
- Artifactual communication:
 - Determined by program implementation and arch. interactions
 - Poor allocation of data across distributed memories
 - Unnecessary data in a transfer
 - Unnecessary transfers due to system granularities
 - Redundant communication of data
 - Finite replication capacity (in cache or main memory)
- Inherent communication assumes unlimited capacity, small transfers, perfect knowledge of what is needed.
- More on artifactual communication later; first consider replication-induced further
Communication and Replication

• Comm. induced by finite capacity is most fundamental artifact
 – Similar to cache size and miss rate or memory traffic in uniprocessors.
 – Extended memory hierarchy view useful for this relationship
• View as three level hierarchy for simplicity
 – Local cache, local memory, remote memory (ignore network topology).
• Classify “misses” in “cache” at any level as for uniprocessors
 • Compulsory or cold misses (no size effect)
 • Capacity misses (yes)
 • Conflict or collision misses (yes)
 • Communication or coherence misses (no)
 – Each may be helped/hurt by large transfer granularity (spatial locality).
Working Set Perspective

• At a given level of the hierarchy (to the next further one)

- Hierarchy of working sets
- At first level cache (fully assoc, one-word block), inherent to algorithm
 - working set curve for program
- Traffic from any type of miss can be local or nonlocal (communication)
Orchestration for Performance

• Reducing amount of communication:
 – Inherent: change logical data sharing patterns in algorithm
 – Artifactual: exploit spatial, temporal locality in extended hierarchy
 • Techniques often similar to those on uniprocessors

• Structuring communication to reduce cost

• We’ll examine techniques for both...
Reducing Artifactual Communication

• Message passing model
 – Communication and replication are both explicit
 – Even artifactual communication is in explicit messages

• Shared address space model
 – More interesting from an architectural perspective
 – Occurs transparently due to interactions of program and system
 • sizes and granularities in extended memory hierarchy

• Use shared address space to illustrate issues
Exploiting Temporal Locality

- Structure algorithm so working sets map well to hierarchy
 - Often techniques to reduce inherent communication do well here
 - Schedule tasks for data reuse once assigned
- Multiple data structures in same phase
 - e.g. database records: local versus remote
- Solver example: blocking

• More useful when $O(n^{k+1})$ computation on $O(n^k)$ data
 - Many linear algebra computations (factorization, matrix multiply)
Exploiting Spatial Locality

• Besides capacity, granularities are important:
 – Granularity of allocation
 – Granularity of communication or data transfer
 – Granularity of coherence

• Major spatial-related causes of artifactual communication:
 – Conflict misses
 – Data distribution/layout (allocation granularity)
 – Fragmentation (communication granularity)
 – False sharing of data (coherence granularity)

• All depend on how spatial access patterns interact with data structures
 – Fix problems by modifying data structures, or layout/alignment

• Examine later in context of architectures
 – One simple example here: data distribution in SAS solver
Spatial Locality Example

- Repeated sweeps over 2-d grid, each time adding 1 to elements
- Natural 2-d versus higher-dimensional array representation

(a) Two-dimensional array

Page straddles partition boundaries: difficult to distribute memory well

Cache block straddles partition boundary

(b) Four-dimensional array

Page does not straddle partition boundary

Cache block is within a partition

Contiguity in memory layout
Tradeoffs with Inherent Communication

Partitioning grid solver: blocks versus rows

- Blocks still have a spatial locality problem on remote data
- Row-wise can perform better despite worse inherent c-to-c ratio

- Result depends on n and p
Example Performance Impact

Equation solver on SGI Origin2000

![Graph showing speedup vs. number of processors for different configurations.]

- Rows
- 4D
- 2D

- 4D
- 4D-rr
- Rows
- Rows-rr
- 2D
- 2D-rr
Architectural Implications of Locality

- Communication abstraction that makes exploiting it easy

- For cache-coherent SAS, e.g.:
 - Size and organization of levels of memory hierarchy
 - cost-effectiveness: caches are expensive
 - caveats: flexibility for different and time-shared workloads
 - Replication in main memory useful? If so, how to manage?
 - hardware, OS/runtime, program?

- Granularities of allocation, communication, coherence (?)
 - small granularities => high overheads, but easier to program

- Machine granularity (resource division among processors, memory...)
Structuring Communication

Given amount of comm (inherent or artifactual), goal is to reduce cost

- Cost of communication as seen by process:
 \[C = f \times (o + l + \frac{n_c}{m} + t_c - \text{overlap}) \]

 - \(f \) = frequency of messages
 - \(o \) = overhead per message (at both ends)
 - \(l \) = network delay per message
 - \(n_c \) = total data sent
 - \(m \) = number of messages
 - \(B \) = bandwidth along path (determined by network, NI, assist)
 - \(t_c \) = cost induced by contention per message
 - \(\text{overlap} \) = amount of latency hidden by overlap with comp. or comm.

 - Portion in parentheses is cost of a message (as seen by processor)
 - That portion, ignoring overlap, is \textit{latency} of a message
 - Goal: reduce terms in latency and increase overlap
Reducing Overhead

- Can reduce no. of messages m or overhead per message o
- o is usually determined by hardware or system software
 - Program should try to reduce m by coalescing messages
 - More control when communication is explicit
- Coalescing data into larger messages:
 - Easy for regular, coarse-grained communication
 - Can be difficult for irregular, naturally fine-grained communication
 - May require changes to algorithm and extra work
 - coalescing data and determining what and to whom to send
 - Will discuss more in implications for programming models later
Reducing Network Delay

- Network delay component = $f \cdot h \cdot t_h$
 - h = number of hops traversed in network
 - t_h = link+switch latency per hop
- Reducing f: Communicate less, or make messages larger
- Reducing h:
 - Map communication patterns to network topology
 e.g. nearest-neighbor on mesh and ring; all-to-all
 - How important is this?
 - Used to be a major focus of parallel algorithms
 - Depends on no. of processors, how t_h, compares with other components
 - Less important on modern machines
 - Overheads, processor count, multiprogramming
Reducing Contention

- All resources have nonzero occupancy:
 - Memory, communication controller, network link, etc.
 - Can only handle so many transactions per unit time.

- Effects of contention:
 - Increased end-to-end cost for messages.
 - Reduced available bandwidth for individual messages.
 - Causes imbalances across processors.

- Particularly insidious performance problem:
 - Easy to ignore when programming
 - Slow down messages that don’t even need that resource
 - by causing other dependent resources to also congest
 - Effect can be devastating: Don’t flood a resource!
Types of Contention

- Network contention and end-point contention (*hot-spots*)
- *Location* and *Module* Hot-spots
 - Location: e.g. accumulating into global variable, barrier
 - Solution: tree-structured communication
 - Module: all-to-all personalized comm. in matrix transpose
 - Solution: stagger access by different processors to same node temporally
 - In general, reduce burstiness; may conflict with making messages larger
Overlapping Communication

• Cannot afford to stall for high latencies
• Overlap with computation or communication to hide latency
• Requires extra concurrency (*slackness*), higher bandwidth

• Techniques:
 – Prefetching
 – Block data transfer
 – Proceeding past communication
 – Multithreading
Summary of Tradeoffs

• Different goals often have conflicting demands
 – Load Balance
 • Fine-grain tasks
 • Random or dynamic assignment
 – Communication
 • Usually coarse grain tasks
 • Decompose to obtain locality: not random/dynamic
 – Extra Work
 • Coarse grain tasks
 • Simple assignment
 – Communication Cost:
 • Big transfers: amortize overhead and latency
 • Small transfers: reduce contention
Relationship Between Perspectives

<table>
<thead>
<tr>
<th>Parallelization step(s)</th>
<th>Performance issue</th>
<th>Processor time component</th>
</tr>
</thead>
<tbody>
<tr>
<td>Decomposition/assignment/orchestration</td>
<td>Load imbalance and synchronization</td>
<td>Synch wait</td>
</tr>
<tr>
<td>Decomposition/assignment</td>
<td>Extra work</td>
<td>Busy-overhead</td>
</tr>
<tr>
<td>Decomposition/assignment</td>
<td>Inherent communication volume</td>
<td>Data-remote</td>
</tr>
<tr>
<td>Orchestration</td>
<td>Artifactual communication and data locality</td>
<td>Data-local</td>
</tr>
<tr>
<td>Orchestration/mapping</td>
<td>Communication structure</td>
<td></td>
</tr>
</tbody>
</table>
Summary

\[\text{Speedup}_{\text{prob}}(p) = \frac{\text{Busy}(1) + \text{Data}(1)}{\text{Busy}_{\text{useful}}(p) + \text{Data}_{\text{local}}(p) + \text{Synch}(p) + \text{Date}_{\text{remote}}(p) + \text{Busy}_{\text{overhead}}(p)} \]

- Goal is to reduce denominator components
- Both programmer and system have role to play
- Architecture cannot do much about load imbalance or too much communication
- But it can:
 - reduce incentive for creating ill-behaved programs (efficient naming, communication and synchronization)
 - reduce artifactual communication
 - provide efficient naming for flexible assignment
 - allow effective overlapping of communication