Generic Multiprocessor Architecture

Node: processor(s), memory system, plus communication assist:

- Network interface and communication controller.

- Scalable network.
 - Function of a parallel machine network is to efficiently transfer information from source node to destination node in support of network transactions that realize the programming model.
 - Network performance should scale up as its size is increased.
Cost of Communication

Given amount of comm (inherent or artifactual), goal is to reduce cost

- Cost of communication as seen by process:
 \[C = f \times (o + l + \frac{n}{B} + t_c - overlap) \]

 - \(f \) = frequency of messages
 - \(o \) = overhead per message (at both ends)
 - \(l \) = network delay per message
 - \(n \) = data sent per message
 - \(B \) = bandwidth along path (determined by network, NI, assist)
 - \(t_c \) = cost induced by contention per message
 - \(overlap \) = amount of latency hidden by overlap with comp. or comm.

 - Portion in parentheses is cost of a message (as seen by processor)
 - That portion, ignoring overlap, is latency of a message
 - Goal: reduce terms in latency and increase overlap
Network Representation & Characteristics

- A parallel machine interconnection network is a graph \(V = \{\text{switches and nodes}\} \) connected by communication channels or links \(C \subseteq V \times V \).

- Each channel has width \(w \) bits and signaling rate \(f = 1/\tau \) (\(\tau \) is clock cycle time).
 - Channel bandwidth \(b = wf \) bits/sec
 - Phit (physical unit) data transferred per cycle (usually channel width \(w \)).
 - Flit - basic unit of flow-control (minimum data unit transferred across a link).

- Number of input (output) channels is switch or node degree.

- Sequence of switches and links followed by a message in the network is a route.

- Routing Distance - number of links or hops on route.

- A network is generally characterized by:
 - Topology.
 - Flow Control Mechanism.
 - Routing Algorithm.
 - Switching Strategy.
Network Characteristics

• Topology:
 – Physical interconnection structure of the network graph:
 • Node Degree: Number of channels per node.
 • Network diameter: Longest minimum routing distance between any two nodes in hops.
 • Average Distance between all pairs of nodes.
 • Bisection width: Minimum number of links whose removal disconnects the graph and cuts it in half.
 • Symmetry: The property that the network looks the same from every node.
 • Homogeneity: Whether all the nodes and links are identical or not.

 – Type of interconnection:
 • Static or Direct Interconnects: Nodes connected directly using static point-to-point links.
 • Dynamic or Indirect Interconnects: Switches are usually used to realize dynamic links between nodes:
 – Each node is connected to specific subset of switches. (e.g. Multistage Interconnection Networks, MINs).
 – Blocking or non-blocking, permutations realized.
 • Shared-, broadcast-, or bus-based connections. (e.g. Ethernet-based).
Network Characteristics

• Routing Algorithm and Functions:
 – The set of paths that messages may follow.
 – Request/message combining capabilities.

• Switching Strategy:
 – Circuit switching vs. packet switching.

• Flow Control Mechanism:
 – When a message or portions of it moves along its route:
 • Store & Forward Routing,
 • Cut-Through or Worm-Hole Routing.
 – What happens when traffic is encountered at a node:
 • Link/Node Contention handling.
 • Deadlock prevention.

• Broadcast and Multicast Capabilities.
• Communication Latency.
• Link bandwidth.
Network Characteristics

- Hardware/software implementation complexity/cost.
- Network throughput: Total number of messages handled by network per unit time.
- Aggregate Network bandwidth: Similar to network throughput but given in total bits/sec.
- Network hot spots: Form in a network when a small number of network nodes/links handle a very large percentage of total network traffic and become saturated.
- Network scalability:
 - The feasibility of increasing network size, determined by:
 - Performance scalability: Relationship between network size in terms of number of nodes and the resulting network performance.
 - Cost scalability: Relationship between network size in terms of number of nodes/links and network cost/complexity.
Network Requirements For Parallel Computing

- Minimum network latency even when approaching network capacity.
- High sustained bandwidth that matches or exceeds the communication requirements for given computational rate.
- High network throughput: Network should support as many concurrent transfers as possible.
- Low Protocol overhead.
- Minimum network cost.
- Maximum Network Scalability: Network performance should scale up with network size.
Communication Network Performance:

Network Latency

Unloaded Network Latency = routing delay + channel occupancy

Time to transfer n bytes from source to destination:

$$\text{Time}(n)_{s-d} = \text{overhead} + \text{routing delay}$$

$$+ \text{channel occupancy} + \text{contention delay}$$

channel occupancy $= (n + n_e) / b$

$b = \text{channel bandwidth, bytes/sec}$

$n = \text{payload size}$

$n_e = \text{packet envelope: header, trailer.}$
Flow Control Mechanisms: Store&Forward Vs. Cut-Through Routing

Store & Forward Routing

Unloaded network latency for n byte packet:

\[h\left(\frac{n}{b} + \Delta\right) \text{ vs } n/b + h \Delta \]

\[h = \text{distance in hops} \quad \Delta = \text{switch delay} \]
Communication Network Performance: Network Latency

- For an unloaded network (no contention delay) the network latency to transfer an n byte packet (including packet envelope) across the network:

 Unloaded Network Latency = routing delay + channel occupancy

- For store-and-forward routing:
 - Unloaded Network Latency = $T_{sf}(n, h) = h(n/b + \Delta)$

- For cut-through routing:
 - Unloaded Network Latency = $T_{ct}(n, h) = n/b + h\Delta$

 $h =$ distance in hops \hspace{1cm} $\Delta =$ switch delay
Reducing Network Latency

• Use cut-through routing:
 – Unloaded Network Latency = $T_{sf}(n, h) = h(\frac{n}{b} + \Delta)$

• Reduce number of hops h in route:
 – Map communication patterns to network topology
 e.g. nearest-neighbor on mesh and ring; all-to-all
 • Applicable to networks with static or direct point-to-point interconnects: Ideally network topology matches problem communication patterns.

• Increase link bandwidth b.

• Reduce switch routing delay Δ.
Available Bandwidth

- Factors affecting local bandwidth available to a single node:
 - Accounting for Packet density: \(b \times n / (n + n_e) \)
 - Also Accounting for Routing delay: \(b \times n / (n + n_e + w\Delta) \)
 - Contention:
 - At endpoints.
 - Within the network.

- Factors affecting throughput or Aggregate bandwidth:
 - Network bisection bandwidth:
 - Sum of bandwidth of smallest set of links when removed partition the network into two unconnected networks of equal size.
 - Total bandwidth of all the channels: \(C_b \) bytes/sec, \(C_w \) bits per cycle or \(C \) phits per cycle.
 - Suppose \(N \) hosts each issue a packet every \(M \) cycles with average routing distance \(h \) and average distribution:
 - Each message occupies \(h \) channels for \(t = n/w \) cycles
 - Total network load = \(Nh_t / M \) phits per cycle.
 - Average Link utilization = Total network load / Total bandwidth
 - Average Link utilization: \(\rho = MC/Nh_t < 1 \)
Two packets trying to use the same link at same time.
 - May be caused by limited available buffering.
 - Possible resolutions:
 - Increased buffer space.
 - Drop one or more packets.
 - Use an alternative route (requires an adaptive routing algorithm or a better static routing to distribute load more evenly).

Most networks used in parallel machines block in place
 - Link-level flow control.
 - Back pressure to the source to slow down flow of data.

Closed system: Offered load depends on delivered.
Network Saturation

Indications of Network Saturation

- High queuing
- Delays

Latency

Delivered Bandwidth

Delivered Bandwidth

Latency

Saturation

Link utilization = 1

Saturation

Offered Bandwidth

Saturation

Delivered Bandwidth
Deadlock In Store & Forward Networks

Deadlock prevention:
Multiple virtual channels mapped onto one physical channel.
Sample Static Network Topologies

- Linear
- Ring
- 2D Mesh
- Hypercube
- Binary Tree
- Fat Binary Tree
- Fully Connected
Static Point-to-point Connection Network Topologies

- Direct point-to-point links are used.
- Suitable for predictable communication patterns matching topology.

Fully Connected Network: Every node is connected to all other nodes using $N-1$ direct links

$$\frac{N(N-1)}{2} \text{ Links} \rightarrow O(N^2) \text{ complexity}$$

Node Degree: $N-1$

Diameter = 1

Average Distance = 1

Bisection Width = $(N/2)^2$

Linear Array:

$N-1$ Links $\rightarrow O(N)$ complexity

Node Degree: 1-2

Diameter = $N-1$

Average Distance = $2/3N$

Bisection Width = 1

Ring:

N Links $\rightarrow O(N)$ complexity

Node Degree: 2

Diameter = $N/2$

Average Distance = $1/3N$

Bisection Width = 2

Examples: Token-Ring, FDDI, SCI, FiberChannel Arbitrated Loop, KSR1

Route A \rightarrow B given by relative address $R = B-A$
Static Network Topologies Examples:
Multidimensional Meshes and Tori

d-dimensional array or mesh:
- $N = k_{d-1} \times \ldots \times k_0$ nodes
- described by d-vector of coordinates (i_{d-1}, \ldots, i_0)
- Where $0 \leq i_j \leq k_j$ for $0 \leq j \leq d-1$

d-dimensional k-ary mesh: $N = k^d$
- $k = \sqrt[d]{N}$
- described by d-vector of radix k coordinate.
- Diameter = $d(k-1)$

d-dimensional k-ary torus (or k-ary d-cube):
- Edges wrap around, every node has degree $2d$ and connected to nodes that differ by one (mod k) in every dimension.
Multidimensional Meshes and Tori Properties

Routing:
- Relative distance: \(R = (b_{d-1} - a_{d-1}, \ldots, b_0 - a_0) \)
- Traverse \(r_i = b_i - a_i \) hops in each dimension.
- Dimension-order routing.

Average Distance:
- \(d \times 2k/3 \) for mesh.
- \(dk/2 \) for cube.

Degree:
- \(d \) to \(2d \) for mesh.
- \(2d \) for cube.

Bisection bandwidth:
- \(k^{d-1} \) bi-directional links when \(k \) is even.

- Physical layout?
 - 2D in \(O(N) \) space.
Static Connection
Networks Examples:
2D Mesh
(2-dimensional k-ary mesh)

For an $k \times k$ 2D Mesh:

- Node Degree: 2-4
- Network diameter: $2(k-1)$
- No of links: $2N - 2k$
- Bisection Width: k
- Where $k = \sqrt{N}$
- Example: 1824 node Intel Paragon: 16 x 114 2D mesh
Static Connection Networks Examples: Hypercubes

- Also called binary n-cubes.
- Dimension $= n = \log_2 N$
- Number of nodes $= N = 2^n$
- Diameter: $O(\log_2 N)$ hops
- Good bisection BW: $N/2$
- Complexity:
 - Number of links: $N(\log_2 N)/2$
 - Node degree is $n = \log_2 N$
Message Routing Functions Example
Dimension-order Routing

Network Topology:
3-dimensional static-link hypercube
Nodes denoted by \(C_2 C_1 C_0 \)

Routing by least significant bit \(C_0 \)

Routing by middle bit \(C_1 \)

Routing by most significant bit \(C_2 \)
Static Connection Networks Examples: Trees

- Diameter and average distance are logarithmic.
 - k-ary tree, height $d = \log_k N$
 - Address specified d-vector of radix k coordinates describing path down from root.
- Fixed degree k.
- Route up to common ancestor and down:
 - $R = B \ XOR \ A$
 - Let i be position of most significant 1 in R, route up $i+1$ levels
 - Down in direction given by low $i+1$ bits of B
- H-tree space is $O(N)$ with $O(\sqrt{N})$ long wires.
- Low Bisection BW = 1
Static Connection Networks Examples: Fat-Trees

- “Fatter” higher bandwidth links (more connections in reality) as you go up, so bisection BW scales with number of nodes N.
- Example: Network topology used in Thinking Machine CM-5
Embedding k-ary d-cubes In Two Dimensions

- Embed multiple logical dimension in one physical dimension using long interconnections.
Embedding A Binary Tree Onto A 2D Mesh

\(\text{A} = \) Additional nodes added to form the tree
Embedding A Ring Onto A 2D Torus
Dynamic Connection Networks

• Switches are usually used to implement connection paths or virtual circuits between nodes instead of fixed point-to-point connections.

• Dynamic connections are established based on communication demands.

• Such networks include:
 – Bus systems.
 – Multi-stage Interconnection Networks (MINs):
 • Omega Network.
 • Baseline Network
 • Butterfly Network, etc.
 – Crossbar switch networks.
Dynamic Networks Definitions

- **Permutation networks:** Can provide any one-to-one mapping between sources and destinations.

- **Strictly non-blocking:** Any attempt to create a valid connection succeeds. These include Clos networks and the crossbar.

- **Wide Sense non-blocking:** In these networks any connection succeeds if a careful routing algorithm is followed. The Benes network is the prime example of this class.

- **Rearrangeably non-blocking:** Any attempt to create a valid connection eventually succeeds, but some existing links may need to be rerouted to accommodate the new connection. Batcher's bitonic sorting network is one example.

- **Blocking:** Once certain connections are established it may be impossible to create other specific connections. The Banyan and Omega networks are examples of this class.

- **Single-Stage networks:** Crossbar switches are single-stage, strictly non-blocking, and can implement not only the N! permutations, but also the N^N combinations of non-overlapping broadcast.
Dynamic Network Building Blocks:

Crossbar-Based Switches

Cross-bar

Input Buffer

Control
Routing, Scheduling

Output Buffer

Transmitter

Input Ports

Receiver

Output Ports
Switch Components

• Output ports:
 – Transmitter (typically drives clock and data).

• Input ports:
 – Synchronizer aligns data signal with local clock domain.
 – FIFO buffer.

• Crossbar:
 – Switch fabric connecting each input to any output.
 – Feasible degree limited by area or pinout, $O(n^2)$ complexity.

• Buffering (input and/or output).

• Control logic:
 – Complexity depends on routing logic and scheduling algorithm.
 – Determine output port for each incoming packet.
 – Arbitrate among inputs directed at same output.
Switch Size And Legitimate States

<table>
<thead>
<tr>
<th>Switch Size</th>
<th>Legitimate States</th>
<th>Permutation Connections</th>
</tr>
</thead>
<tbody>
<tr>
<td>2×2</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>4×4</td>
<td>256</td>
<td>24</td>
</tr>
<tr>
<td>8×8</td>
<td>$16,777,216$</td>
<td>$40,320$</td>
</tr>
<tr>
<td>$n \times n$</td>
<td>n^n</td>
<td>$n!$</td>
</tr>
</tbody>
</table>
Permutations

• For \(n \) objects there are \(n! \) permutations by which the \(n \) objects can be reordered.
• The set of all permutations form a permutation group with respect to a composition operation.
• One can use cycle notation to specify a permutation function. For Example:

The permutation \(\pi = (a, b, c)(d, e) \) stands for the bijection mapping:

\[a \to b, \ b \to c, \ c \to a, \ d \to e, \ e \to d \]

in a circular fashion. The cycle \((a, b, c)\) has a period of 3 and the cycle \((d, e)\) has a period of 2. Combining the two cycles, the permutation \(\pi\) has a cycle period of \(2 \times 3 = 6\). If one applies the permutation \(\pi\) six times, the identity mapping \(I = (a)(b)(c)(d)(e)\) is obtained.
Perfect Shuffle

- Perfect shuffle is a special permutation function suggested by Harold Stone (1971) for parallel processing applications.
- Obtained by rotating the binary address of an one position left.
- The perfect shuffle and its inverse for 8 objects are shown here:

```
Perfect Shuffle

000 --> 000
001 --> 001
010 --> 010
011 --> 011
100 --> 100
101 --> 101
110 --> 110
111 --> 111

Inverse Perfect Shuffle

000 --> 000
001 --> 001
010 --> 010
011 --> 011
100 --> 100
101 --> 101
110 --> 110
111 --> 111
```
Multi-Stage Networks: The Omega Network

- In the Omega network, perfect shuffle is used as an inter-stage connection pattern for all $\log_2 N$ stages.
- Routing is simply a matter of using the destination's address bits to set switches at each stage.
- The Omega network is a single-path network: There is just one path between an input and an output.
- It is equivalent to the Banyan, Staran Flip Network, Shuffle Exchange Network, and many others that have been proposed.
- The Omega can only implement $N^{N/2}$ of the $N!$ permutations between inputs and outputs, so it is possible to have permutations that cannot be provided (i.e. paths that can be blocked).
 - For $N = 8$, there are $8^4/8! = 4096/40320 = 0.1016 = 10.16\%$ of the permutations that can be implemented.
- It can take $\log_2 N$ passes of reconfiguration to provide all links. Because there are $\log_2 N$ stages, the worst case time to provide all desired connections can be $(\log_2 N)^2$.
Multi-Stage Networks:
The Omega Network

Fig 2.24 page 92

Kai Hwang ref.

See handout
MINs Example: Baseline Network

Fig 2.25 page 93

Kai Hwang ref.

See handout
MINs Example: Butterfly Network

- Complexity: \(\frac{N}{2} \times \log N \)
- Exactly one route from any source to any destination node.
- \(R = A \ XOR \ B \), at level \(i \) use ‘straight’ edge if \(r_i = 0 \), otherwise cross edge
- Bisection \(\frac{N}{2} \)
- Diameter \(\log N \)
Relationship Between Butterfly Network & Hypercubes

- The connection patterns in the two networks are isomorphic.
 - Except that Butterfly always takes $\log_2 n$ steps.
Traditional Network Scaling: Latency(P)

- Assumes equal channel width:
 - Independent of node count or dimension.
 - Dominated by average distance.

Message transmission time (single channel occupancy)
Unloaded Latency with Equal Bisection Width

- N-node hypercube has N bisection links.
- 2d torus has $2N^{1/2}$
- Fixed bisection $\Rightarrow w(d) = N^{1/d}/2 = k/2$
- not shown: 1 M nodes, $d=2$ has $w=512$ And avg. 1023 hops.

$n = 40$ bytes, $\Delta = 2$
Summary of Static Network Characteristics

Table 2.2 page 88

Kai Hwang ref.

See handout
Summary of Dynamic Network Characteristics

Table 2.4 page 95
Kai Hwang ref.
See handout
Example Networks: Cray MPPs

- **T3D**: Short, Wide, Synchronous (300 MB/s).
 - 3D bidirectional torus up to 1024 nodes, dimension order, virtual cut-through, packet switched routing.
 - 24 bits: 16 data, 4 control, 4 reverse direction flow control
 - Single 150 MHz clock (including processor).
 - flit = phit = 16 bits.
 - Two control bits identify flit type (idle and framing).
 - No-info, routing tag, packet, end-of-packet.

- **T3E**: long, wide, asynchronous (500 MB/s)
 - 14 bits, 375 MHz
 - flit = 5 phits = 70 bits
 - 64 bits data + 6 control
 - Switches operate at 75 MHz.
 - Framed into 1-word and 8-word read/write request packets.
Parallel Machine Examples

<table>
<thead>
<tr>
<th>Machine</th>
<th>Topology</th>
<th>Cycle Time (ns)</th>
<th>Channel Width (bits)</th>
<th>Routing Delay (cycles)</th>
<th>Flit (data bits)</th>
</tr>
</thead>
<tbody>
<tr>
<td>nCUBE/2</td>
<td>Hypercube</td>
<td>25</td>
<td>1</td>
<td>40</td>
<td>32</td>
</tr>
<tr>
<td>TMC CM-5</td>
<td>Fat-Tree</td>
<td>25</td>
<td>4</td>
<td>10</td>
<td>4</td>
</tr>
<tr>
<td>IBM SP-2</td>
<td>Banyan</td>
<td>25</td>
<td>8</td>
<td>5</td>
<td>16</td>
</tr>
<tr>
<td>Intel Paragon</td>
<td>2D Mesh</td>
<td>11.5</td>
<td>16</td>
<td>2</td>
<td>16</td>
</tr>
<tr>
<td>Meiko CS-2</td>
<td>Fat-Tree</td>
<td>20</td>
<td>8</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>CRAY T3D</td>
<td>3D Torus</td>
<td>6.67</td>
<td>16</td>
<td>2</td>
<td>16</td>
</tr>
<tr>
<td>DASH</td>
<td>Torus</td>
<td>30</td>
<td>16</td>
<td>2</td>
<td>16</td>
</tr>
<tr>
<td>J-Machine</td>
<td>3D Mesh</td>
<td>31</td>
<td>8</td>
<td>2</td>
<td>8</td>
</tr>
<tr>
<td>Monsoon</td>
<td>Butterfly</td>
<td>20</td>
<td>16</td>
<td>2</td>
<td>16</td>
</tr>
<tr>
<td>SGI Origin</td>
<td>Hypercube</td>
<td>2.5</td>
<td>20</td>
<td>16</td>
<td>160</td>
</tr>
<tr>
<td>Myricom</td>
<td>Arbitrary</td>
<td>6.25</td>
<td>16</td>
<td>50</td>
<td>16</td>
</tr>
</tbody>
</table>