Parallel System Performance: Evaluation & Scalability

• Factors affecting parallel system performance:
 – Algorithm-related, parallel program related, architecture/hardware-related.

• Workload-Driven Quantitative Architectural Evaluation:
 – Select applications or suite of benchmarks to evaluate architecture either on real or simulated machine.
 – From measured performance results compute performance metrics:
 • Speedup, System Efficiency, Redundancy, Utilization, Quality of Parallelism.
 – Resource-oriented Workload scaling models: How the speedup of an application is affected subject to specific constraints:
 • Problem constrained (PC): Fixed-load Model.
 • Time constrained (TC): Fixed-time Model.
 • Memory constrained (MC): Fixed-Memory Model.

• Performance Scalability:
 – Definition.
 – Conditions of scalability.
 – Factors affecting scalability.

(Parallel Computer Architecture, Chapter 4)
Parallel Program Performance

- Parallel processing goal is to maximize speedup:

$$\text{Speedup} = \frac{\text{Time}(1)}{\text{Time}(p)} \leq \frac{\text{Max(Sequential Work)}}{\text{Max}(\text{Work + Synch Wait Time + Comm Cost + Extra Work})}$$

- By:
 - Balancing computations on processors (every processor does the same amount of work).
 - Minimizing communication cost and other overheads associated with each step of parallel program creation and execution.
Factors affecting Parallel System Performance

• Parallel Algorithm-related:
 – Available concurrency and profile, grain, uniformity, patterns.
 – Required communication/synchronization, uniformity and patterns.
 – Data size requirements.
 – Communication to computation ratio.
 – Partitioning: Decomposition and assignment to tasks

• Parallel program related:
 – Programming model used.
 – Orchestration
 – Resulting data/code memory requirements, locality and working set characteristics.
 – Parallel task grain size.
 – Mapping & Scheduling: Dynamic or static.
 – Cost of communication/synchronization.

• Hardware/Architecture related:
 – Total CPU computational power available.
 – Shared address space Vs. message passing support.
 – Communication network characteristics.
 – Memory hierarchy properties.
Parallel Performance Metrics Revisited

- **Degree of Parallelism (DOP):** For a given time period, reflects the number of processors in a specific parallel computer actually executing a particular parallel program.

- **Average Parallelism:**
 - Given maximum parallelism = \(m \)
 - \(n \) homogeneous processors
 - Computing capacity of a single processor \(\Delta \)
 - Total amount of work (instructions or computations):
 \[
 W = \Delta \int_{t_1}^{t_2} DOP(t) \, dt \quad \text{or as a discrete summation} \quad W = \Delta \sum_{i=1}^{m} i \cdot t_i
 \]

Where \(t_i \) is the total time that DOP = \(i \) and \(\sum_{i=1}^{m} t_i = t_2 - t_1 \)

The average parallelism \(A \):

\[
A = \int_{t_1}^{t_2} \frac{DOP(t)}{t_2 - t_1} \, dt \quad \text{In discrete form} \quad A = \left(\frac{\sum_{i=1}^{m} i \cdot t_i}{\sum_{i=1}^{m} t_i} \right)
\]
Parallel Performance Metrics Revisited

Asymptotic Speedup:

Execution time with one processor

\[T(1) = \sum_{i=1}^{m} t_i(1) = \sum_{i=1}^{m} \frac{W_i}{\Delta} \]

Execution time with an infinite number of available processors (number of processors \(n = \infty \) or \(n >> m \))

\[T(\infty) = \sum_{i=1}^{m} t_i(\infty) = \sum_{i=1}^{m} \frac{W_i}{i\Delta} \]

Asymptotic speedup \(S_\infty \)

\[S_\infty = \frac{T(1)}{T(\infty)} = \frac{\sum_{i=1}^{m} W_i}{\sum_{i=1}^{m} W_i / i} \]

The above ignores all overheads.

\(\Delta = \) Computing capacity of a single processor
\(m = \) maximum degree of parallelism
\(t_i = \) total time that DOP = \(i \)
\(W_i = \) total work with DOP = \(i \)
Phase Parallel Model of An Application

- Consider a sequential program of size s consisting of k computational phases C_1 C_k where each phase C_i has a degree of parallelism DOP = i
- Assume single processor execution time of phase C_i = T_1(i)
- Total single processor execution time = T_1 = \sum_{i=1}^{i=k} T_1(i)
- Ignoring overheads, n processor execution time: T_n = \sum_{i=1}^{i=k} T_1(i) / \min(i, n)
- If all overheads are grouped as interaction T_{interact} = Synch Time + Comm Cost and parallelism T_{par} = Extra Work, as h(s, n) = T_{interact} + T_{par} then parallel execution time:
 \[T_n = \sum_{i=1}^{i=k} T_1(i) / \min(i, n) + h(s, n) \]
- If k = n and f_i is the fraction of sequential execution time with DOP = i \(\pi = \{f_i|i = 1, 2, \ldots, n\} \) and ignoring overheads the speedup is given by:
 \[S(n) = S(\infty) = \frac{T_1}{T_n} = \left(\frac{1}{\sum_{i=1}^{n} f_i/i} \right) \]
Harmonic Mean Speedup for n
Execution Mode Multiprocessor system

Fig 3.2 page 111
See handout
Parallel Performance Metrics Revisited: Amdahl’s Law

- **Harmonic Mean Speedup**
 \(s(n) = \frac{T_1}{T_n} = \frac{1}{\sum_{i=1}^{n} f_i/i} \)
 \(f_i \) is the fraction of sequential execution time with DOP =i

\[
S(n) = \frac{1}{\sum_{i=1}^{n} f_i/i} \quad \text{DOP } = i \\
\text{(sequential)} \quad \text{DOP } = n
\]

- In the case \(w = \{f_i \text{ for } i = 1, 2, \ldots, n\} = (\alpha, 0, 0, \ldots, 1-\alpha)\), the system is running sequential code with probability \(\alpha\) and utilizing \(n\) processors with probability \((1-\alpha)\) with other processor modes not utilized.

Amdahl’s Law:

\[
S_n = \frac{1}{\alpha + (1-\alpha)/n}
\]

\(S \rightarrow 1/\alpha\) as \(n \rightarrow \infty\)

⇒ Under these conditions the best speedup is upper-bounded by \(1/\alpha\)
Parallel Performance Metrics Revisited

Efficiency, Utilization, Redundancy, Quality of Parallelism

- **System Efficiency:** Let $O(n)$ be the total number of unit operations performed by an n-processor system and $T(n)$ be the execution time in unit time steps:
 - In general $T(n) \ll O(n)$ (more than one operation is performed by more than one processor in unit time).
 - Assume $T(1) = O(1)$
 - Speedup factor: $S(n) = \frac{T(1)}{T(n)}$
 - Ideal $T(n) = \frac{T(1)}{n}$ -> Ideal speedup = n
 - **System efficiency** $E(n)$ for an n-processor system:
 \[
 E(n) = \frac{S(n)}{n} = \frac{T(1)}{nT(n)}
 \]

 ideally $S(n) = n$ and $E(n) = \frac{n}{n} = 1$
Parallel Performance Metrics Revisited
Cost, Utilization, Redundancy, Quality of Parallelism

• **Cost:** The processor-time product or cost of a computation is defined as

\[\text{Cost}(n) = n \times T(n) = n \times T(1) / S(n) = T(1) / E(n) \]

 - The cost of sequential computation on one processor \(n=1 \) is simply \(T(1) \)
 - A cost-optimal parallel computation on \(n \) processors has a cost proportional to \(T(1) \) when

\[S(n) = n, \quad E(n) = 1 \quad ---\rightarrow \quad \text{Cost}(n) = T(1) \]

• **Redundancy:** \(R(n) = O(n)/O(1) \)
 - Ideally with no overheads/extra work \(O(n) = O(1) \) \(\rightarrow \) \(R(n) = 1 \)

• **Utilization:** \(U(n) = R(n)E(n) = O(n) /[nT(n)] \)
 - Ideally \(R(n) = E(n) = U(n) = 1 \)

• **Quality of Parallelism:**

\[Q(n) = S(n)E(n) / R(n) = T^3(1) /[nT^2(n)O(n)] \]

 - Ideally \(S(n) = n, \quad E(n) = R(n) = 1 \quad ---\rightarrow \quad Q(n) = n \)
A Parallel Performance measures

Example

For a hypothetical workload with

- $O(1) = T(1) = n^3$
- $O(n) = n^3 + n^2\log_2 n \quad T(n) = \frac{4n^3}{n+3}$

Fig 3.4 page 114

Table 3.1 page 115
See handout
Application Models of Parallel Computers

- If work load W or problem size s is unchanged then:
 - The efficiency E decreases rapidly as the machine size n increases because the overhead $h(s, n)$ increases faster than the machine size.

- The condition of a scalable parallel computer solving a scalable parallel problems exists when:
 - A desired level of efficiency is maintained by increasing the machine size and problem size proportionally. $E(n) = S(n)/n$
 - In the ideal case the workload curve is a linear function of n: (Linear scalability in problem size).

- Application Workload Models for Parallel Computers:
 - Workload scales subject to a given constraint as the machine size is increased:
 - **Problem constrained (PC):** or Fixed-load Model. Corresponds to a constant workload or fixed problem size.
 - **Time constrained (TC):** or Fixed-time Model. Constant execution time.
 - **Memory constrained (MC):** or Fixed-memory Model: Scale problem so memory usage per processor stays fixed. Bound by memory of a single processor.
Problem Constrained (PC) Scaling:

Fixed-Workload Speedup

When $DOP = i > n$ \((n = \text{number of processors})\)

Execution time of W_i

$$t_i(n) = \frac{W_i}{i\Delta} \left\lfloor \frac{i}{n} \right\rfloor$$

Total execution time

$$T(n) = \sum_{i=1}^{m} \frac{W_i}{i\Delta} \left\lfloor \frac{i}{n} \right\rfloor$$

If $DOP = i < n$, then $t_i(n) = t_i(\infty) = \frac{W_i}{i\Delta}$

Fixed-load speedup factor is defined as the ratio of $T(1)$ to $T(n)$:

$$S_n = \frac{T(1)}{T(n)} = \frac{\sum_{i=1}^{m} W_i}{\sum_{i=1}^{m} \frac{W_i}{i} \left\lfloor \frac{i}{n} \right\rfloor}$$

Let $h(s, n)$ be the total system overheads on an n-processor system:

$$S_n = \frac{T(1)}{T(n) + h(s, n)} = \frac{\sum_{i=1}^{m} W_i}{\sum_{i=1}^{m} \frac{W_i}{i} \left\lfloor \frac{i}{n} \right\rfloor + h(s, n)}$$

The overhead term $h(s, n)$ is both application- and machine-dependent and usually difficult to obtain in closed form.
Amdahl’s Law for Fixed-Load Speedup

• For the special case where the system either operates in sequential mode (DOP = 1) or a perfect parallel mode (DOP = n), the Fixed-load speedup is simplified to:

\[S_n = \frac{W_1 + W_n}{W_1 + W_n/n} \]

We assume here that the overhead factor \(h(s, n) = 0 \)

For the normalized case where:

\[W_1 + W_n = \alpha + (1 - \alpha) = 1 \quad \text{with} \quad \alpha = W_1 \quad \text{and} \quad 1 - \alpha = W_n \]

The equation is reduced to the previously seen form of Amdahl’s Law:

\[S_n = \frac{1}{\alpha + (1 - \alpha)/n} \]
Time Constrained (TC) Workload Scaling

Fixed-Time Speedup

- To run the largest problem size possible on a larger machine with about the same execution time of the original problem on a single processor.

Let \(m' \) be the maximum DOP for the scaled up problem,
\[W'_i \] be the scaled workload with DOP = i

In general, \(W'_i > W_i \) for \(2 \leq i \leq m' \) and \(W'_1 = W_1 \)

Assuming that \(T(1) = T'(n) \) we obtain:

\[
T(1) = T'(1) = \sum_{i=1}^{m'} W_i = \sum_{i=1}^{m'} \frac{W'_i}{i} \left\lfloor \frac{i}{n} \right\rfloor + h(s,n)
\]

Speedup \(S'_n = T'(1) / T'(n) \) is given by:

\[
S'_n = \frac{T'(1)}{T'(n)} = \frac{T'(1)}{T(1)} = \frac{\sum_{i=1}^{m'} W'_i}{\sum_{i=1}^{m'} \frac{W'_i}{i} \left\lfloor \frac{i}{n} \right\rfloor + h(s,n)} = \frac{\sum_{i=1}^{m'} W'_i}{\sum_{i=1}^{m} W_i}
\]

Time on one processor for scaled problem

Original workload
Gustafson’s Fixed-Time Speedup

- For the special fixed-time speedup case where DOP can either be 1 or \(n\) and assuming \(h(s,n) = 0\)

Time for scaled up problem on one processor

\[
T(1) = T'(n) \quad W'_1 = W_1
\]

\[
S'_n = \frac{T'(1)}{T'(n)} = \frac{T'(1)}{T(1)} = \frac{\sum_{i=1}^{m'} W'_i}{\sum_{i=1}^{m} W_i} = \frac{W'_1 + \sum_{i=1}^{m} W'_i}{W_1 + \sum_{i=1}^{m} W_i} = \frac{W_1 + nW_n}{W_1 + W_n}
\]

Where \(W'_n = nW_n\) and \(W_1 + W_n = W'_1 + W'_n/n\)

Assuming \(a = W_1\) and \(1 - \alpha = W_n\) and \(W_1 + W_n = 1\)

\[
S'_n = \frac{T(1)}{T'(n)} = \frac{\alpha + n(1 - \alpha)}{\alpha + (1 - \alpha)} = n - \alpha(n - 1)
\]
Memory Constrained (MC) Scaling

Fixed-Memory Speedup

- Scale so memory usage per processor stays fixed
- Scaled Speedup: Time(1) / Time(p) for scaled up problem
- Let M be the memory requirement of a given problem
- Let \(W = g(M) \) or \(M = g^{-1}(W) \) where

\[
W = \sum_{i=1}^{m} W_i \quad \text{workload for sequential execution} \quad W^* = \sum_{i=1}^{m} W^*_i \quad \text{scaled workload on } n \text{ nodes}
\]

The memory bound for an active node is

\[
g^{-1}\left(\sum_{i=1}^{m} W_i\right)
\]

The fixed-memory speedup is defined by:

\[
S^*_n = \frac{T'(1)}{T'(n)} = \frac{\sum_{i=1}^{m} W^*_i}{\sum_{i=1}^{m} \left[W^*_i \cdot \left(\frac{i}{n}\right)\right]} + h(s, n)
\]

Assuming \(W^*_n = g^*(nM) = G(n)g(M) = G(n)W^*_n \) and either sequential or perfect parallelism and \(h(s, n) = 0 \)

\[
S^*_n = \frac{W^*_1 + W^*_n}{W^*_1 + W^*_n / n} = \frac{W^*_1 + G(n)W^*_n}{W^*_1 + G(n)W^*_n / n}
\]

- \(G(n) = 1 \) problem size fixed (Amdahl’s)
- \(G(n) = n \) workload increases n times as memory demands increase n times = Fixed Time
- \(G(n) > n \) workload increases faster than memory requirements \(S^*_n > S'_n \)
- \(G(n) < n \) memory requirements increase faster than workload \(S'_n > S^*_n \)
Impact of Scaling Models: Grid Solver

• For sequential n x n solver: memory requirements O(n^2). Computational complexity O(n^2) times number of iterations (minimum O(n)) thus W = O(n^3)

• Problem constrained (PC) Scaling:
 – Grid size fixed = n x n Ideal Parallel Execution time = O(n^3/p)

• Memory Constrained (MC) Scaling:
 – Memory requirements stay the same: O(n^2) per processor.
 – Grid size = n √p – by – n √p
 – Iterations to converge = n √p
 – Workload = O(n √p)
 – Ideal parallel execution time = O\left(\frac{n √p}{p}\right) = O\left(n^3 √p\right)
 • Grows by √p
 • 1 hr on uniprocessor for original problem means 32 hr on 1024 processors for scaled up problem (new grid size 32 n x 32 n).

• Time Constrained (TC) scaling:
 – Execution time remains the same O(n^3) as sequential case.
 – If scaled grid size is k-by-k, then k^3/p = n^3, so k = n × 3√p.
 – Memory needed per processor = k^2/p = n^2 / 3√p
 • Diminishes as cube root of number of processors

Workload = O\left(\left(n^3 √p\right)^3\right) Grows slower than MC
Impact on Solver Execution Characteristics

- **Concurrency:** Total Number of Grid points
 - PC: fixed; n^2
 - MC: grows as p: $p \times n^2$
 - TC: grows as $p^{0.67}$

- **Comm. to comp. Ratio:** Assuming block decomposition
 - PC: grows as \sqrt{p}
 - MC: fixed; $4/n$
 - TC: grows as $\sqrt[6]{p}$

- **Working Set:**
 - PC: shrinks as p: n^2/p
 - MC: fixed = n^2
 - TC: shrinks as $\sqrt[3]{p}$: $n^{2/3}/p$

- Expect speedups to be best under MC and worst under PC.
Scalability

- The study of scalability is concerned with determining the degree of matching between a computer architecture and an application algorithm and whether this degree of matching continues to hold as problem and machine sizes are scaled up.
- Combined architecture/algorithmic scalability imply increased problem size can be processed with acceptable performance level with increased system size for a particular architecture and algorithm.

- Basic factors affecting the scalability of a parallel system for a given problem:

 Machine Size n
 Clock rate f
 Problem Size s
 CPU time T
 I/O Demand d
 Memory Capacity m
 Communication/other overheads $h(s, n)$, where $h(s, 1) = 0$
 Computer Cost c
 Programming Overhead p
Parallel Scalability Metrics

- CPU Time
- I/O Demand
- Programming Cost
- Machine Size
- Problem Size
- Hardware Cost
- Memory Demand
- Communication Overhead

Scalability of An architecture/algorithm Combination
Revised Asymptotic Speedup, Efficiency

• Revised Asymptotic Speedup:

\[S(s, n) = \frac{T(s, 1)}{T(s, n) + h(s, n)} \]

- \(s \) problem size.
- \(n \) number of processors
- \(T(s, 1) \) minimal sequential execution time on a uniprocessor.
- \(T(s, n) \) minimal parallel execution time on an n-processor system.
- \(h(s, n) \) lump sum of all communication and other overheads.

Problem/Arcitecture
Scalable
if \(h(s, n) \) grow slowly with as \(s, n \) increase

• Revised Asymptotic Efficiency:

\[E(s, n) = \frac{S(s, n)}{n} \]
Parallel System Scalability

• **Scalability** (informal very restrictive definition): A system architecture is scalable if the system efficiency $E(s, n) = 1$ for all algorithms with any number of processors n and any size problem s

• **Another Scalability Definition** (more formal): The scalability $\Phi(s, n)$ of a machine for a given algorithm is defined as the ratio of the asymptotic speedup $S(s,n)$ on the real machine to the asymptotic speedup $S_I(s, n)$ on the ideal realization of an EREW PRAM

\[
S_I(s, n) = \frac{T(s,1)}{T_I(s, n)}
\]

\[
\Phi(s, n) = \frac{S(s,n)}{S_I(s, n)} = \frac{T_I(s, n)}{T(s, n)}
\]
Example: Scalability of Network Architectures for Parity Calculation

Table 3.7 page 142
see handout
Programmability Vs. Scalability

Ideal Parallel Computers

Message-passing multicomuter with distributed memory

Multiprocessor with shared memory

Increased Scalability

Increased Programmability
Evaluating a Real Parallel Machine

• Performance Isolation using Microbenchmarks
• Choosing Workloads
• Evaluating a Fixed-size Machine
• Varying Machine Size
• All these issues, plus more, relevant to evaluating a tradeoff via simulation
Performance Isolation: Microbenchmarks

- Microbenchmarks: Small, specially written programs to isolate performance characteristics
 - Processing.
 - Local memory.
 - Input/output.
 - Communication and remote access (read/write, send/receive)
 - Synchronization (locks, barriers).
 - Contention.
Types of Workloads/Benchmarks

- **Kernels:** matrix factorization, FFT, depth-first tree search
- **Complete Applications:** ocean simulation, ray trace, database.
- **Multiprogrammed Workloads.**

• Multiprog. ←→ Appls ←→ Kernels ←→ Microbench.

 Realistic
 Complex
 Higher level interactions
 Are what really matters

 Easier to understand
 Controlled
 Repeatable
 Basic machine characteristics

Each has its place:

Use kernels and microbenchmarks to gain understanding, but full applications needed to evaluate realistic effectiveness and performance
Desirable Properties of Workloads

- Representative of application domains
- Coverage of behavioral properties
- Adequate concurrency
Desirable Properties of Workloads: Representative of Application Domains

- Should adequately represent domains of interest, e.g.:
 - Scientific: Physics, Chemistry, Biology, Weather ...
 - Engineering: CAD, Circuit Analysis ...
 - Graphics: Rendering, radiosity ...
 - Information management: Databases, transaction processing, decision support ...
 - Optimization
 - Artificial Intelligence: Robotics, expert systems ...
 - Multiprogrammed general-purpose workloads
 - System software: e.g. the operating system
Desirable Properties of Workloads: Coverage: Stressing Features

• Some features of interest:
 – Compute v. memory v. communication v. I/O bound
 – Working set size and spatial locality
 – Local memory and communication bandwidth needs
 – Importance of communication latency
 – Fine-grained or coarse-grained
 • Data access, communication, task size
 – Synchronization patterns and granularity
 – Contention
 – Communication patterns

• Choose workloads that cover a range of properties
Coverage: Levels of Optimization

• Many ways in which an application can be suboptimal
 – Algorithmic, e.g. assignment, blocking
 – Data structuring, e.g. 2-d or 4-d arrays for SAS grid problem
 – Data layout, distribution and alignment, even if properly structured
 – Orchestration
 • contention
 • long versus short messages
 • synchronization frequency and cost, ...
 – Also, random problems with “unimportant” data structures

• Optimizing applications takes work
 – Many practical applications may not be very well optimized

• May examine selected different levels to test robustness of system
Desirable Properties of Workloads: Concurrency

- Should have enough to utilize the processors
 - If load imbalance dominates, may not be much machine can do
 - (Still, useful to know what kinds of workloads/configurations don’t have enough concurrency)

- Algorithmic speedup: useful measure of concurrency/imbalance
 - Speedup (under scaling model) assuming all memory/communication operations take zero time
 - Ignores memory system, measures imbalance and extra work
 - Uses PRAM machine model (Parallel Random Access Machine)
 - Unrealistic, but widely used for theoretical algorithm development

- At least, should isolate performance limitations due to program characteristics that a machine cannot do much about (concurrency) from those that it can.
Effect of Problem Size Example: Ocean

\[\text{n-by-n grid with } p \text{ processors} \]

(notation like grid solver)

\(n/p \text{ is large} \Rightarrow\)
- Low communication to computation ratio
- Good spatial locality with large cache lines
- Data distribution and false sharing not problems even with 2-d array
- Working set doesn’t fit in cache; high local capacity miss rate.

\(n/p \text{ is small} \Rightarrow\)
- High communication to computation ratio
- Spatial locality may be poor; false-sharing may be a problem
- Working set fits in cache; low capacity miss rate.

e.g. Shouldn’t make conclusions about spatial locality based only on small problems, particularly if these are not very representative.
Sample Workload/Benchmark Suites

- **Numerical Aerodynamic Simulation (NAS)**
 - Originally pencil and paper benchmarks
- **SPLASH/SPLASH-2**
 - Shared address space parallel programs
- **ParkBench**
 - Message-passing parallel programs
- **ScaLapack**
 - Message-passing kernels
- **TPC**
 - Transaction processing
 - **SPEC-HPC**
- **...**
Multiprocessor Simulation

• Simulation runs on a uniprocessor (can be parallelized too)
 – Simulated processes are interleaved on the processor
• Two parts to a simulator:
 – Reference generator: plays role of simulated processors
 • And schedules simulated processes based on simulated time
 – Simulator of extended memory hierarchy
 • Simulates operations (references, commands) issued by reference generator
• Coupling or information flow between the two parts varies
 – Trace-driven simulation: from generator to simulator
 – Execution-driven simulation: in both directions (more accurate)
• Simulator keeps track of simulated time and detailed statistics.
Execution-Driven Simulation

- Memory hierarchy simulator returns simulated time information to reference generator, which is used to schedule simulated processes.